Skip to main content

Lightweight Cosmetic Contact Lens Detection System for Iris Recognition at a Distance

  • Conference paper
  • First Online:
18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023) (SOCO 2023)

Abstract

The deployment of an iris recognition framework highlighted the relevance of developing a presentation attack detection (PAD) approach. The objective of this approach is to verify whether the acquired iris pattern is real or not. Impersonation attacks against an iris recogniser could be carried out by counterfeiting the natural iris patterns with fake replicas. Such replication can take several forms, with the contact lens attack being the most challenging. In an iris recognition at a distance (IAAD) scenario, this paper describes the design of a lightweight cosmetic contact lens detection system. The approach employs the popular Binarized Statistical Image Features (BSIF) descriptor and evaluates a separate set of two classifiers (Support Vector Machines (SVM), and multilayer perceptrons (MLP)) over a bank of 120 different BSIF encodings. As main novelty with respect to previous approaches, our descriptors are obtained from the normalised iris pattern, and not directly from the eye image. The resulting set of 232 models, built using the Notre Dame (NDCLD’15) dataset, was ranked by their performance on a validation set built using the Cogent subset of the IIITD dataset and then added one at a time to create a classification ensemble. Using an ensemble with only three SVM-based classifiers, we have obtained a correct classification rate (CCR) of 97,30%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://tinyurl.com/wssberz (Accessed on March 28, 2023).

References

  1. Mordor Intelligence (2022) Global Iris Recognition Market (2022–2027)

    Google Scholar 

  2. Nguyen, K., Fookes, C., Jillela, R., Sridharan, S., Ross, A.: Long range iris recognition: a survey. Pattern Recogn. 72, 123–143 (2017)

    Article  Google Scholar 

  3. Ruiz-Beltrán, C.A., Romero-Garcés, A., González, M., Sánchez-Pedraza, A., Rodríguez-Fernández, J.A., Bandera, A.: Real-time embedded eye detection system. Expert Syst. Appl. 194, 116505 (2022). https://doi.org/10.1016/j.eswa.2022.116505

  4. Baker, S.E., Hentz, A., Bowyer, K., Flynn, P.J.: Degradation of iris recognition performance due to non-cosmetic prescription contact lenses. Comput. Vis. Image Understand. 114(9), 1030–1044 (2010)

    Article  Google Scholar 

  5. Kohli, N., Yadav, D., Vatsa, M., Singh, R.: Revisiting iris recognition with color cosmetic contact lenses. In: 2013 International Conference on Biometrics (ICB), Madrid, Spain, pp. 1–7 (2013). https://doi.org/10.1109/ICB.2013.6613021

  6. Yadav, D., Kohli, N., Doyle, J.S., Singh, R., Vatsa, M., Bowyer, K.W.: Unraveling the effect of textured contact lenses on iris recognition. IEEE Trans. Inf. Forensics Secur. 9(5), 851–862 (2014)

    Article  Google Scholar 

  7. Yambay, D., et al.: LivDet iris 2017-Iris liveness detection competition 2017. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, pp. 733–741 (2017). https://doi.org/10.1109/BTAS.2017.8272763

  8. Doyle, J.S., Flynn, P.J., Bowyer, K.W.: Automated classification of contact lens type in iris images. In: 2013 International Conference on Biometrics (ICB), Madrid, Spain, pp. 1–6 (2013). https://doi.org/10.1109/ICB.2013.6612954

  9. Sequeira, A., Thavalengal, S., Ferryman, J., Corcoran, P., Cardoso, J.S.: A realistic evaluation of iris presentation attack detection. In: 2016 39th International Conference on Telecommunications and Signal Processing (TSP), Vienna, Austria, pp. 660–664 (2016). https://doi.org/10.1109/TSP.2016.7760965

  10. Pala F., Bhanu, B.: Iris liveness detection by relative distance comparisons. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, pp. 664–671 (2017). https://doi.org/10.1109/CVPRW.2017.95

  11. Komulainen, J., Hadid, A., Pietikainen, M.: Contact lens detection in iris images. In: Rathgeb, C., Busch, C. (eds.) Iris and Periocular Biometric Recognition, Chapter 12, pp. 265–290. IET, London, UK (2017)

    Google Scholar 

  12. McGrath, J., Bowyer, K.W., Czajka, A.: Open source presentation attack detection baseline for iris recognition. CoRR, abs/1809.10172 (2018). http://arxiv.org/abs/1809.10172

  13. Doyle, S., Bowyer, K.W.: Robust detection of textured contact lenses in iris recognition using BSIF. IEEE Access 3, 1672–1683 (2015). https://doi.org/10.1109/ACCESS.2015.2477470

  14. Raghavendra, R., Raja, K.B., Busch, C.: ContlensNet: robust iris contact lens detection using deep convolutional neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, pp. 1160–1167 (2017). https://doi.org/10.1109/WACV.2017.134

  15. Tapia, J.E., Gonzalez, S., Busch, C.: Iris liveness detection using a cascade of dedicated deep learning networks. IEEE Trans. Inf. Forensics Secur. 17, 42–52 (2022). https://doi.org/10.1109/TIFS.2021.3132582

  16. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474

  17. Yadav, D., Kohli, N., Agarwal, A., Vatsa, M., Singh, R., Noore, A.: Fusion of handcrafted and deep learning features for large-scale multiple iris presentation attack detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, pp. 685–6857 (2018). https://doi.org/10.1109/CVPRW.2018.00099

  18. Gupta, M., Singh, V., Agarwal, A., Vatsa, M., Singh, R.: Generalized iris presentation attack detection algorithm under cross-database settings. In: Proceedings of IEEE ICPR, pp. 5318–5325 (2020)

    Google Scholar 

  19. Agarwal, A., Noore, A., Vatsa, M., Singh, R.: Generalized contact lens iris presentation attack detection. IEEE Trans. Biom. Behav. Identity Sci. 4(3), 373–385 (2022). https://doi.org/10.1109/TBIOM.2022.3177669

    Article  Google Scholar 

  20. Dronky, M.R., Khalifa, W., Roushdy, M.: Impact of segmentation on iris liveness detection. In: 2019 14th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, pp. 386–392 (2019). https://doi.org/10.1109/ICCES48960.2019.9068147

  21. Dronky, M.R., Khalifa, W., Roushdy, M.: Using residual images with BSIF for iris liveness detection. Expert Syst. Appl. 182, 115266 (2021). https://doi.org/10.1016/j.eswa.2021.115266

  22. Othman, N., Dorizzi, B., Garcia-Salicetti, S.: OSIRIS: an open source iris recognition software. Pattern Recogn. Lett. 82, 124–131 (2016). https://doi.org/10.1016/j.patrec.2015.09.002

    Article  Google Scholar 

  23. Gragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L.: Using iris and sclera for detection and classification of contact lenses. Pattern Recogn. Lett. 82(2), 251–257 (2016). https://doi.org/10.1016/j.patrec.2015.10.009

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partly supported by grant CPP2021-008931 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR, and by projects TED2021-131739B-C21 and PDC2022-133597-C42, funded by the Gobierno de España and FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bandera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romero-Garcés, A., Ruiz-Beltrán, C., Marfil, R., Bandera, A. (2023). Lightweight Cosmetic Contact Lens Detection System for Iris Recognition at a Distance. In: García Bringas, P., et al. 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023). SOCO 2023. Lecture Notes in Networks and Systems, vol 750. Springer, Cham. https://doi.org/10.1007/978-3-031-42536-3_24

Download citation

Publish with us

Policies and ethics