Abstract
The deployment of an iris recognition framework highlighted the relevance of developing a presentation attack detection (PAD) approach. The objective of this approach is to verify whether the acquired iris pattern is real or not. Impersonation attacks against an iris recogniser could be carried out by counterfeiting the natural iris patterns with fake replicas. Such replication can take several forms, with the contact lens attack being the most challenging. In an iris recognition at a distance (IAAD) scenario, this paper describes the design of a lightweight cosmetic contact lens detection system. The approach employs the popular Binarized Statistical Image Features (BSIF) descriptor and evaluates a separate set of two classifiers (Support Vector Machines (SVM), and multilayer perceptrons (MLP)) over a bank of 120 different BSIF encodings. As main novelty with respect to previous approaches, our descriptors are obtained from the normalised iris pattern, and not directly from the eye image. The resulting set of 232 models, built using the Notre Dame (NDCLD’15) dataset, was ranked by their performance on a validation set built using the Cogent subset of the IIITD dataset and then added one at a time to create a classification ensemble. Using an ensemble with only three SVM-based classifiers, we have obtained a correct classification rate (CCR) of 97,30%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://tinyurl.com/wssberz (Accessed on March 28, 2023).
References
Mordor Intelligence (2022) Global Iris Recognition Market (2022–2027)
Nguyen, K., Fookes, C., Jillela, R., Sridharan, S., Ross, A.: Long range iris recognition: a survey. Pattern Recogn. 72, 123–143 (2017)
Ruiz-Beltrán, C.A., Romero-Garcés, A., González, M., Sánchez-Pedraza, A., Rodríguez-Fernández, J.A., Bandera, A.: Real-time embedded eye detection system. Expert Syst. Appl. 194, 116505 (2022). https://doi.org/10.1016/j.eswa.2022.116505
Baker, S.E., Hentz, A., Bowyer, K., Flynn, P.J.: Degradation of iris recognition performance due to non-cosmetic prescription contact lenses. Comput. Vis. Image Understand. 114(9), 1030–1044 (2010)
Kohli, N., Yadav, D., Vatsa, M., Singh, R.: Revisiting iris recognition with color cosmetic contact lenses. In: 2013 International Conference on Biometrics (ICB), Madrid, Spain, pp. 1–7 (2013). https://doi.org/10.1109/ICB.2013.6613021
Yadav, D., Kohli, N., Doyle, J.S., Singh, R., Vatsa, M., Bowyer, K.W.: Unraveling the effect of textured contact lenses on iris recognition. IEEE Trans. Inf. Forensics Secur. 9(5), 851–862 (2014)
Yambay, D., et al.: LivDet iris 2017-Iris liveness detection competition 2017. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, pp. 733–741 (2017). https://doi.org/10.1109/BTAS.2017.8272763
Doyle, J.S., Flynn, P.J., Bowyer, K.W.: Automated classification of contact lens type in iris images. In: 2013 International Conference on Biometrics (ICB), Madrid, Spain, pp. 1–6 (2013). https://doi.org/10.1109/ICB.2013.6612954
Sequeira, A., Thavalengal, S., Ferryman, J., Corcoran, P., Cardoso, J.S.: A realistic evaluation of iris presentation attack detection. In: 2016 39th International Conference on Telecommunications and Signal Processing (TSP), Vienna, Austria, pp. 660–664 (2016). https://doi.org/10.1109/TSP.2016.7760965
Pala F., Bhanu, B.: Iris liveness detection by relative distance comparisons. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, pp. 664–671 (2017). https://doi.org/10.1109/CVPRW.2017.95
Komulainen, J., Hadid, A., Pietikainen, M.: Contact lens detection in iris images. In: Rathgeb, C., Busch, C. (eds.) Iris and Periocular Biometric Recognition, Chapter 12, pp. 265–290. IET, London, UK (2017)
McGrath, J., Bowyer, K.W., Czajka, A.: Open source presentation attack detection baseline for iris recognition. CoRR, abs/1809.10172 (2018). http://arxiv.org/abs/1809.10172
Doyle, S., Bowyer, K.W.: Robust detection of textured contact lenses in iris recognition using BSIF. IEEE Access 3, 1672–1683 (2015). https://doi.org/10.1109/ACCESS.2015.2477470
Raghavendra, R., Raja, K.B., Busch, C.: ContlensNet: robust iris contact lens detection using deep convolutional neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, pp. 1160–1167 (2017). https://doi.org/10.1109/WACV.2017.134
Tapia, J.E., Gonzalez, S., Busch, C.: Iris liveness detection using a cascade of dedicated deep learning networks. IEEE Trans. Inf. Forensics Secur. 17, 42–52 (2022). https://doi.org/10.1109/TIFS.2021.3132582
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474
Yadav, D., Kohli, N., Agarwal, A., Vatsa, M., Singh, R., Noore, A.: Fusion of handcrafted and deep learning features for large-scale multiple iris presentation attack detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, pp. 685–6857 (2018). https://doi.org/10.1109/CVPRW.2018.00099
Gupta, M., Singh, V., Agarwal, A., Vatsa, M., Singh, R.: Generalized iris presentation attack detection algorithm under cross-database settings. In: Proceedings of IEEE ICPR, pp. 5318–5325 (2020)
Agarwal, A., Noore, A., Vatsa, M., Singh, R.: Generalized contact lens iris presentation attack detection. IEEE Trans. Biom. Behav. Identity Sci. 4(3), 373–385 (2022). https://doi.org/10.1109/TBIOM.2022.3177669
Dronky, M.R., Khalifa, W., Roushdy, M.: Impact of segmentation on iris liveness detection. In: 2019 14th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, pp. 386–392 (2019). https://doi.org/10.1109/ICCES48960.2019.9068147
Dronky, M.R., Khalifa, W., Roushdy, M.: Using residual images with BSIF for iris liveness detection. Expert Syst. Appl. 182, 115266 (2021). https://doi.org/10.1016/j.eswa.2021.115266
Othman, N., Dorizzi, B., Garcia-Salicetti, S.: OSIRIS: an open source iris recognition software. Pattern Recogn. Lett. 82, 124–131 (2016). https://doi.org/10.1016/j.patrec.2015.09.002
Gragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L.: Using iris and sclera for detection and classification of contact lenses. Pattern Recogn. Lett. 82(2), 251–257 (2016). https://doi.org/10.1016/j.patrec.2015.10.009
Acknowledgements
This work has been partly supported by grant CPP2021-008931 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR, and by projects TED2021-131739B-C21 and PDC2022-133597-C42, funded by the Gobierno de España and FEDER funds.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Romero-Garcés, A., Ruiz-Beltrán, C., Marfil, R., Bandera, A. (2023). Lightweight Cosmetic Contact Lens Detection System for Iris Recognition at a Distance. In: García Bringas, P., et al. 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023). SOCO 2023. Lecture Notes in Networks and Systems, vol 750. Springer, Cham. https://doi.org/10.1007/978-3-031-42536-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-42536-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42535-6
Online ISBN: 978-3-031-42536-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)