Skip to main content

A Preliminary Study of MLSE/ACE-III Stages for Primary Progressive Aphasia Automatic Identification Using Speech Features

  • Conference paper
  • First Online:
18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023) (SOCO 2023)

Abstract

Primary Progressive Aphasia (PPA) is a syndrome causing progressive deterioration of language and speech due to brain degeneration. Three variants exist: non-fluent variant (nfvPPA), semantic variant(svPPA) and logopenic variant (lvPPA). While fMRI is the most accepted diagnostic tool (and neurological exploration), it is expensive and takes even months to deliver results. Cheaper and faster tools are needed for earlier diagnosis and treatment initiation. Some studies have attempted automatic diagnosis using acoustic and linguistic features with ML and DL techniques. However, none have included Latin language patients or analyzed the effect of cognitive tests. This work proposes a methodology based on three main steps: i) a new assessment tool (PPATool) combining ACE-III and MLSE with three language tasks: verbal fluency, repetition and naming, and ii) an IDA process to obtain an ML model trained with our own two-class (PPA/Healthy) dataset, and iii) ranking the relevance of tasks in PPATool from models performance. The results obtained after deploying the IDA process on the dataset obtained from an early-stage clinical trial, show that the verbal fluency data outperforms the rest of the tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://scikit-learn.org/.

  2. 2.

    https://xgboost.readthedocs.io.

References

  1. Boyanov, B., Hadjitodorov, S.: Acoustic analysis of pathological voices: a voice analysis system for the screening and laryngeal diseases. IEEE Eng. Med. Biol. Maga. 16(4), 74–82 (1997)

    Article  Google Scholar 

  2. de la Cal, E., Gallucci, A., Villar, J.R., Yoshida, K., Koeppen, M.: Simple meta-optimization of the feature MFCC for public emotional datasets classification. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds.) HAIS 2021. LNCS (LNAI), vol. 12886, pp. 659–670. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86271-8_55

    Chapter  Google Scholar 

  3. de la Cal, E., Gallucci, A., Villar, J.R., Yoshida, K., Koeppen, M.: A first prototype of an emotional smart speaker, pp. 304–313 (2022)

    Google Scholar 

  4. Cho, S., Nevler, N., Shellikeri, S., Ash, S., Liberman, M.: Automatic classification of primary progressive aphasia patients using lexical and acoustic features. In: Proceedings of Language Resources and Evaluation Conference 2020 workshop on Resources and Processing of Linguistic, Para-linguistic and Extra-linguistic Data from People with Various Forms of Cognitive/Psychiatric/Developmental Impairments, June, pp. 60–65 (2020)

    Google Scholar 

  5. Fan, W., Xu, X., Xing, X., Chen, W., Huang, D.: LSSED: a large-scale dataset and benchmark for speech emotion recognition. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, June 2021, pp. 641–645 (2021)

    Google Scholar 

  6. Fraser, K.C., et al.: Automated classification of primary progressive aphasia subtypes from narrative speech transcripts. Cortex 55(1), 43–60 (2014)

    Article  Google Scholar 

  7. Gorno-Tempini, M.L., et al.: Classification of primary progressive aphasia and its variants. Neurology 76(11), 1006–1014 (2011)

    Article  Google Scholar 

  8. Hoffman, P., Sajjadi, S.A., Patterson, K., Nestor, P.J.: Data-driven classification of patients with primary progressive aphasia. Brain Lang. 174(July), 86–93 (2017)

    Article  Google Scholar 

  9. Matias-Guiu, J.A., et al.: Spanish version of the mini-linguistic state examination for the diagnosis of primary progressive aphasia. J. Alzheimer’s Dis. 83(2), 771–778 (2021)

    Article  Google Scholar 

  10. Orozco-Arroyave, J.R., Arias-Londoño, J.D., Vargas-Bonilla, J.F., González-Rátiva, M.C., Nöth, E.: New Spanish speech corpus database for the analysis of people suffering from Parkinson’s disease. In: Proceedings of the 9th International Conference on Language Resources and Evaluation, LREC 2014, December 2014, pp. 342–347 (2014)

    Google Scholar 

  11. Patel, N., et al.: A ‘Mini Linguistic State Examination’ to classify primary progressive aphasia (2022)

    Google Scholar 

  12. Ranjan Sahoo, T., Patra, S.: Silence removal and endpoint detection of speech signal for text independent speaker identification. Image Graph. Signal Process. 6, 27–35 (2014)

    Article  Google Scholar 

  13. Riello, M., et al.: Neural correlates of letter and semantic fluency in primary progressive aphasia. Brain Sci. 12(1), 1 (2021)

    Article  Google Scholar 

  14. Rofes, A., De Aguiar, V., Ficek, B., Wendt, H., Webster, K., Tsapkini, K.: The role of word properties in performance on fluency tasks in people with primary progressive aphasia. J. Alzheimer’s Dis. 68(4), 1521–1534 (2019)

    Article  Google Scholar 

  15. Themistocleous, C., Webster, K., Afthinos, A., Tsapkini, K.: Part of speech production in patients with primary progressive aphasia: an analysis based on natural language processing. Am. J. Speech-Lang. Pathol. 30(1s), 466–480 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

The research has been funded by the Spanish Ministry of Economics and Industry, grant PID2020-112726RB-I00, by the Spanish Research Agency (AEI, Spain) under grant agreement RED2018-102312-T (IA-Biomed), and by the Ministry of Science and Innovation under CERVERA Excellence Network project CER-20211003 (IBERUS) and Missions Science and Innovation project MIG-20211008 (INMERBOT). Also, by Principado de Asturias, grant SV-PA-21-AYUD/2021/50994. By European Union’s Horizon 2020 research and innovation programme (project DIH4CPS) under Grant Agreement no 872548. And by CDTI (Centro para el Desarrollo Tecnológico Industrial) under projects CER-20211003 and CER-20211022 and by ICE (Junta de Castilla y León) under project CCTT3/20/BU/0002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amable J. Valdés Cuervo or Enrique A. de la Cal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

J. Valdés Cuervo, A., Herrera, E., A. de la Cal, E. (2023). A Preliminary Study of MLSE/ACE-III Stages for Primary Progressive Aphasia Automatic Identification Using Speech Features. In: García Bringas, P., et al. 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023). SOCO 2023. Lecture Notes in Networks and Systems, vol 750. Springer, Cham. https://doi.org/10.1007/978-3-031-42536-3_31

Download citation

Publish with us

Policies and ethics