Skip to main content

Extracting the Architecture of Microservices: An Approach for Explainability and Traceability

  • Conference paper
  • First Online:
Software Architecture (ECSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14212))

Included in the following conference series:

Abstract

The polyglot nature of microservice architectures and the need for high reliability in security analyses pose unique challenges that existing approaches to automatic architecture recovery often fail to address. This article proposes an approach for extracting detailed architecture models from polyglot microservice source code focusing on explainability and traceability. The approach involves abstracting code navigation as a tree structure, using an exploratory algorithm to detect architectural aspects, and providing a set of generic detectors as input. The architecture models are automatically annotated with detailed information that makes them useful for architecture conformance checking and violation fixing. Our case studies of microservice software systems validate the usefulness of our approach, providing insights into its completeness, accuracy, and effectiveness for software architecture tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zenodo.org/record/6424722.

  2. 2.

    https://zenodo.org/record/8100928.

References

  1. Bushong, V., Das, D., Al Maruf, A., Cerny, T.: Using static analysis to address microservice architecture reconstruction. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE (2021)

    Google Scholar 

  2. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microservice architecture reconstruction and visualization techniques: a review. In: 2022 IEEE International Conference on Service-Oriented System Engineering (SOSE). IEEE (2022)

    Google Scholar 

  3. Ducasse, S., Pollet, D.: Software architecture reconstruction: a process-oriented taxonomy. IEEE Trans. Software Eng. 35(4), 573–591 (2009)

    Article  Google Scholar 

  4. Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L., Di Salle, A.: Towards recovering the software architecture of microservice-based systems. In: 2017 IEEE International conference on software architecture workshops (ICSAW). IEEE (2017)

    Google Scholar 

  5. Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility and reliability in e-commerce. In: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW). IEEE (2017)

    Google Scholar 

  6. Newman, S.: Building Microservices. O’Reilly Media Inc., Sebastopol (2015)

    Google Scholar 

  7. Ntentos, E., Zdun, U., Plakidas, K., Geiger, S.: Semi-automatic feedback for improving architecture conformance to microservice patterns and practices. In: 2021 IEEE 18th International Conference on Software Architecture (ICSA). IEEE (2021)

    Google Scholar 

  8. Ntentos, E., et al.: Detector-based component model abstraction for microservice-based systems. Computing 103(11), 2521–2551 (2021)

    Article  MathSciNet  Google Scholar 

  9. Ntentos, E., Zdun, U., Plakidas, K., Meixner, S., Geiger, S.: Assessing architecture conformance to coupling-related patterns and practices in microservices. In: Jansen, A., Malavolta, I., Muccini, H., Ozkaya, I., Zimmermann, O. (eds.) ECSA 2020. LNCS, vol. 12292, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58923-3_1

    Chapter  Google Scholar 

  10. Papotti, P.E., do Prado, A.F., de Souza, W.L.: Reducing time and effort in legacy systems reengineering to MDD using metaprogramming. In: Proceedings of the 2012 ACM Research in Applied Computation Symposium (2012)

    Google Scholar 

  11. Rademacher, F., Sachweh, S., Zündorf, A.: A modeling method for systematic architecture reconstruction of microservice-based software systems. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 311–326. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49418-6_21

    Chapter  Google Scholar 

  12. Rattan, D., Bhatia, R., Singh, M.: Software clone detection: a systematic review. Inf. Softw. Technol. 55(7), 1165–1199 (2013)

    Article  Google Scholar 

  13. Zdun, U., et al.: Microservice security metrics for secure communication, identity management, and observability. ACM Trans. Softw. Eng. Methodol. 32(1), 1–34 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

Our work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 952647 (AssureMOSS project). This work was supported by: FWF (Austrian Science Fund) project API-ACE: I 4268; FWF (Austrian Science Fund) project IAC: I 4731-N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Jean Quéval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quéval, PJ., Zdun, U. (2023). Extracting the Architecture of Microservices: An Approach for Explainability and Traceability. In: Tekinerdogan, B., Trubiani, C., Tibermacine, C., Scandurra, P., Cuesta, C.E. (eds) Software Architecture. ECSA 2023. Lecture Notes in Computer Science, vol 14212. Springer, Cham. https://doi.org/10.1007/978-3-031-42592-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42592-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42591-2

  • Online ISBN: 978-3-031-42592-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics