Skip to main content

Object Anchoring for Autonomous Robots Using the Spatio-Temporal-Semantic Environment Representation SEEREP

  • Conference paper
  • First Online:
KI 2023: Advances in Artificial Intelligence (KI 2023)

Abstract

For single-plant specific weed regulation, robotic systems and agricultural machinery in general have to collect a large amount of temporal and spatial high-resolution sensor data. SEEREP, the Spatio-Temporal-Semantic Environment Representation, can be used to structure and manage such data more efficiently. SEEREP deals with the spatial, temporal and semantic modalities of data simultaneously and provides an efficient query interface for all three modalities that can be combined for high-level analyses. It supports popular robotic sensor data such as images and point clouds, as well as sensor and robot coordinate frames changing over time. This query interface enables high-level reasoning systems as well as other data analysis methods to handle partially unstructured environments that change over time, as for example agricultural environments. But the current methodology of SEEREP cannot store the result of the analysis methods regarding specific objects instances in the world. Especially the results of the anchoring problem which searches for a connection between symbolic and sub-symbolic data cannot be represented nor queried. Thus, we propose a further development of the SEEREP methodology in this paper: For a given object, we link the existing semantic labels in different datasets to a unique common instance, thereby enabling queries for datasets showing this object instance and with this enabling the efficient provision of datasets for object-centric analysis algorithms. Additionally, the results of those algorithms can be stored linked to the instance either by adding facts in a triple-store like manner or by adding further data linked to the instance, like a point, representing the position of the instance. We show the benefits of our anchoring approach in an agricultural setting with the use-case of single-plant specific weed regulation.

The DFKI Niedersachsen (DFKI NI) is sponsored by the Ministry of Science and Culture of Lower Saxony and the VolkswagenStiftung. This work is supported by the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) within the CognitiveWeeding project (grant number: 67KI21001B).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/agri-gaia/seerep.

References

  1. Deeken, H., Wiemann, T., Hertzberg, J.: Grounding semantic maps in spatial databases. Robot. Auton. Syst. 105, 146–165 (2018). https://doi.org/10.1016/j.robot.2018.03.011

    Article  Google Scholar 

  2. Dong, J., Burnham, J.G., Boots, B., Rains, G., Dellaert, F.: 4D crop monitoring: Spatio-temporal reconstruction for agriculture. In: 2017 IEEE ICRA, pp. 3878–3885. Singapore (2017). https://doi.org/10.1109/ICRA.2017.7989447

  3. Elfring, J., van den Dries, S., van de Molengraft, M.J.G., Steinbuch, M.: Semantic world modeling using probabilistic multiple hypothesis anchoring. Robot. Auton. Syst. 61(2), 95–105 (2013). https://doi.org/10.1016/j.robot.2012.11.005

    Article  Google Scholar 

  4. Blender Foundation: blender.org - home of the blender project - free and open 3D creation software. https://www.blender.org/

  5. Günther, M., Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J., Hertzberg, J.: Context-aware 3D object anchoring for mobile robots. Robot. Auton. Syst. 110, 12–32 (2018). https://doi.org/10.1016/j.robot.2018.08.016

    Article  Google Scholar 

  6. Harnad, S.: The symbol grounding problem. Phys. D 42, 335–346 (1990)

    Article  Google Scholar 

  7. Magistri, F., Chebrolu, N., Stachniss, C.: Segmentation-based 4D registration of plants point clouds for phenotyping. In: 2020 IEEE/RSJ IROS, pp. 2433–2439. IEEE (2020). https://doi.org/10.1109/IROS45743.2020.9340918

  8. Mason, J., Marthi, B.: An object-based semantic world model for long-term change detection and semantic querying. In: 2012 IEEE/RSJ IROS, pp. 3851–3858 (2012). https://doi.org/10.1109/IROS.2012.6385729

  9. Moreau, D., Pointurier, O., Nicolardot, B., Villerd, J., Colbach, N.: In which cropping systems can residual weeds reduce nitrate leaching and soil erosion? Eur. J. Agron. 119, 126015 (2020). https://doi.org/10.1016/j.eja.2020.126015

    Article  Google Scholar 

  10. Niemeyer, M., Pütz, S., Hertzberg, J.: A spatio-temporal-semantic environment representation for autonomous mobile robots equipped with various sensor systems. In: 2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI-2022) (2022). https://doi.org/10.1109/MFI55806.2022.9913873

  11. Oliveira, M., Lim, G.H., Seabra Lopes, L., Kasaei, S.H., Tomé, A., Chauhan, A.: A perceptual memory system for grounding semantic representations in intelligent service robots. In: Proceedings of the IEEE/RSJ IROS, IEEE (2014). https://doi.org/10.1109/IROS.2014.6942861

  12. Partel, V., Charan Kakarla, S., Ampatzidis, Y.: Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 157, 339–350 (2019). https://doi.org/10.1016/J.COMPAG.2018.12.048

    Article  Google Scholar 

  13. Persson, A., Martires, P.Z.D., Loutfi, A., De Raedt, L.: Semantic relational object tracking. IEEE Trans. Cogn. Dev. Syst. 12(1), 84–97 (2020). https://doi.org/10.1109/TCDS.2019.2915763, arXiv:1902.09937 [cs]

  14. Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Automat. Contr. 24(6), 843–854 (1979). https://doi.org/10.1109/TAC.1979.1102177

    Article  Google Scholar 

  15. Renz, M., Niemeyer, M., Hertzberg, J.: Towards model-based automation of plant-specific weed regulation. 43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme (2023)

    Google Scholar 

  16. Storkey, J., Westbury, D.B.: Managing arable weeds for biodiversity. Pest Manage. Sci. 63(6), 517–523 (2007). https://doi.org/10.1002/PS.1375

    Article  Google Scholar 

  17. Yang, X., et al.: A survey on smart agriculture: development modes, technologies, and security and privacy challenges. IEEE/CAA J. Autom. Sinica 8(2), 273–302 (2021). https://doi.org/10.1109/JAS.2020.1003536

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Niemeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niemeyer, M., Renz, M., Hertzberg, J. (2023). Object Anchoring for Autonomous Robots Using the Spatio-Temporal-Semantic Environment Representation SEEREP. In: Seipel, D., Steen, A. (eds) KI 2023: Advances in Artificial Intelligence. KI 2023. Lecture Notes in Computer Science(), vol 14236. Springer, Cham. https://doi.org/10.1007/978-3-031-42608-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42608-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42607-0

  • Online ISBN: 978-3-031-42608-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics