Skip to main content

A Game Theoretic Decision Tree for Binary Classification

  • Conference paper
  • First Online:
Artificial Evolution (EA 2022)

Abstract

Decision trees are some of the most popular and intuitive classification techniques. Based on the recursive division of the data, the goal is to ultimately identify regions in the space in which most instances belong to the same class. This paper proposes a game-theoretic decision tree using a two-player game to determine the splitting hyperplane at the node level based on the Nash equilibrium concept. The entropy on each sub-node is used as a payoff function that has to be minimized. The game’s equilibrium can be computed by minimizing an objective function constructed based on Nash equilibria properties. A new selection mechanism is proposed for the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) in order to approximate equilibria at each node level. Numerical experiments illustrate the behavior of the approach compared with other decision trees based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Generated by using the function: make_classification(n_samples=50, n_features=2, n_redundant=0, n_informative=2, n_classes=2, random_state=50, class_sep=0.5, weights=[0.5]) from the Python module sklearn.datasets.

  2. 2.

    UCI Machine Learning Repository https://archive.ics.uci.edu/ml/index.php, accessed October 2021.

References

  1. Banos, R.C., Jaskowiak, P.A., Cerri, R., de Carvalho, A.C.P.L.F.: A framework for bottom-up induction of oblique decision trees. Neurocomputing 135(SI), 3–12 (2014). https://doi.org/10.1016/j.neucom.2013.01.067

  2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks, Monterey, CA (1984)

    MATH  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  4. Cai, Y., Zhang, H., He, Q., Sun, S.: New classification technique: fuzzy oblique decision tree. Trans. Instit. Measur. Control 41(8, SI), 2185–2195 (2019). https://doi.org/10.1177/0142331218774614

  5. ECNU: oblique decision tree in python. https://github.com/zhenlingcn/scikit-obliquetree (2021)

  6. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010. rOC Analysis in Pattern Recognition

    Article  MathSciNet  Google Scholar 

  7. Freedman, D.A.: Statistical Models: Theory and Practice. Cambridge University Press, 2 edn. (2009). https://doi.org/10.1017/CBO9780511815867

  8. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evol. Comput. 11(1), 1–18 (2003). https://doi.org/10.1162/106365603321828970

    Article  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS, Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  10. Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Support Syst. 51(1), 141–154 (2011). https://doi.org/10.1016/j.dss.2010.12.003

    Article  Google Scholar 

  11. Leroux, A., Boussard, M., Des, R.: Inducing Readable Oblique Decision Trees. In: 2018 IEEE 30th International Conference on Tools With Artificial Intelligence (ICTAI), pp. 401–408 (2018). https://doi.org/10.1109/ICTAI.2018.00069. Volos, Greece, 05-07 Nov 2018

  12. Li, Y., Dong, M., Kothari, R.: Classifiability-based omnivariate decision trees. IEEE Trans. Neural Netw. 16(6), 1547–1560 (2005)

    Article  Google Scholar 

  13. McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. Handbook Comput. Econ. 1, 87–142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. J. Artif. Intell. Res. 2, 1–32 (1994)

    Article  MATH  Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Rosset, S.: Model selection via the AUC. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 89. ICML 2004, Association for Computing Machinery, New York, NY, USA (2004). https://doi.org/10.1145/1015330.1015400

  17. Scholz, M., Wimmer, T.: A comparison of classification methods across different data complexity scenarios and datasets. Expert Syst. Appl. 168, 114217 (2021). https://doi.org/10.1016/j.eswa.2020.114217

    Article  Google Scholar 

  18. Setiono, R., Liu, H.: A connectionist approach to generating oblique decision trees. IEEE Trans. Syst. Man Cybern. Part B Cybern. 29(3), 440–444 (1999). https://doi.org/10.1109/3477.764880

    Article  Google Scholar 

  19. yan Song, Y., Lu, Y.: Decision tree methods: applications for classification and prediction. Shanghai Archiv. Psychiatry 27, 130–135 (2015)

    Google Scholar 

  20. Wickramarachchi, D., Robertson, B., Reale, M., Price, C., Brown, J.: HHCART: an oblique decision tree. Comput. Statist. Data Anal. 96, 12–23 (2016). https://doi.org/10.1016/j.csda.2015.11.006

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008). https://doi.org/10.1007/s10115-007-0114-2

    Article  Google Scholar 

  22. Zaki, M.J., Meira, W.: Data Mining and Machine Learning: Fundamental Concepts and Algorithms. Cambridge University Press, 2 edn. (2020). https://doi.org/10.1017/9781108564175

Download references

Acknowledgements

This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2020-2360, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai-Alexandru Suciu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lung, R.I., Suciu, MA. (2023). A Game Theoretic Decision Tree for Binary Classification. In: Legrand, P., et al. Artificial Evolution. EA 2022. Lecture Notes in Computer Science, vol 14091. Springer, Cham. https://doi.org/10.1007/978-3-031-42616-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42616-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42615-5

  • Online ISBN: 978-3-031-42616-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics