Skip to main content

Neural Network-Based Virtual Analog Modeling

  • Conference paper
  • First Online:
Artificial Evolution (EA 2022)

Abstract

Vacuum tube amplifiers present sonic characteristics often coveted by musicians, that are due to the distinct distortion of their circuits and accurately modeling such effects can be a challenging task. A recent rise in machine learning has lead to the ubiquity of neural networks in all fields including virtual analog modeling. This has lead to the appearance of a variety of architectures tailored to this task. We aim to provide an overview of the current state of the research in neural emulation of distortion circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arik, S.Ö., Jun, H., Diamos, G.: Fast spectrogram inversion using multi-head convolutional neural networks. Inst. Electr. Electron. Eng. (IEEE) 26, 1–6 (2018)

    Google Scholar 

  2. Covert, J., Livingston, D.L.: A vacuum-tube guitar amplifier model using a recurrent neural network. In: Proceedings - IEEE SouthEactCon December, 1–5 (2013)

    Google Scholar 

  3. Damskägg, E.P., Juvela, L., Thuillier, E., Välimäki, V.: Deep learning for tube amplifier emulation. In: Proceedings of the IEEE International Conference on Acoustics Speech Signal Process. (ICASSP-19), Brighton, UK, May 2019, pp. 471–475 (2019)

    Google Scholar 

  4. Damskägg, E.P., Juvela, L., Välimäki, V.: Real-time modeling of audio distortion circuits with deep learning. In: Proceedings of the SMC Conferences, pp. 332–339 (2019)

    Google Scholar 

  5. Eichas, F., Möller, S., Zölzer, U.: Block-oriented gray box modeling of guitar amplifiers. In: Proceedings of the 20th International Conference on Digital Audio Effects, pp. 184–191 (2017)

    Google Scholar 

  6. Eichas, F., Zölzer, U.: Black-box modeling of distortion circuits with block-oriented models. In: Proceedings of the 19th International Conference on Digital Audio Effects, DAFx September, pp. 39–45 (2016)

    Google Scholar 

  7. Engel, J., Hantrakul, L., Gu, C., Roberts, A., Team, B., View, M.: DDSP: differentiable digital signal processing. Digital Signal Process. 1–19 (2020)

    Google Scholar 

  8. Esqueda, F., Kuznetsov, B., Parker, J.D.: Differentiable white-box virtual analog modeling. 24th International Conference on Digital Audio Effects, pp. 41–48 (2021)

    Google Scholar 

  9. Fonseca, E., et al.: Freesound datasets: a platform for the creation of open audio datasets. In: International Society for Music Informatic Retrieval (ISMIR) (2017)

    Google Scholar 

  10. Fractal Audio Systems: Multipoint Iterative Matching and Impedance Correction Technology (MIMIC \(^{{\rm TM}}\) ). Technical report, April, Fractal Audio Systems (2013)

    Google Scholar 

  11. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (1999)

    Article  Google Scholar 

  12. Gillespie, D.J., Ellis, D.P.: Modeling nonlinear circuits with linearized dynamical models via kernel regression. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, vol. 8 (2013)

    Google Scholar 

  13. Hawley, S., Colburn, B., Mimilakis, S.I.: SignalTrain LA2A dataset. In: Audio Engineering Society 147th Conference (AES 147) (2020)

    Google Scholar 

  14. ITU-R: ITU-R BS.1534-3: Method for the Subjective Assessment of Intermediate Quality Level of Audio Systems. International Telecommunication Union Radiocommunication. Sector BS Series, vol. 34 (2015)

    Google Scholar 

  15. ITU-R BS.1770-4: Algorithms to Measure Audio Programme Loudness and True-peak Audio Level BS Series Broadcasting Service (sound). International Telecommunication Union Radiocommunication Sector 4 (2015)

    Google Scholar 

  16. Jillings, N., Moffat, D., De Man, B., Reiss, J.: Web audio evaluation tool: a browser-based listening test environment. In: SMC (2015)

    Google Scholar 

  17. Kehling, C., Männchen, A., Eppler, A.: IDMT-SMT-Audio-Effects. Technical report, Fraunhofer Inst. for Digital Media Technology IDMT (2010)

    Google Scholar 

  18. Kehling, C., Männchen, A., Eppler, A.: IDMT-SMT-Guitar. Technical report, Fraunhofer Inst. for Digital Media Technology IDMT (2014)

    Google Scholar 

  19. Kehling, C., Männchen, Andreas, Eppler, A.: IDMT-SMT-Bass. Technical report, Fraunhofer Inst. for Digital Media Technology IDMT (2010)

    Google Scholar 

  20. Kemp, M.J.: Analysis and Simulation of Non-Linear Audio Processes using Finite Impulse Responses Derived at Multiple Impulse Amplitudes. The 106th AES Convention p. Preprint no.4919 (1999)

    Google Scholar 

  21. Kuznetsov, B., Parker, J.D., Esqueda, F.: Differentiable IIR filters for machine learning applications. In: 23rd International Conference on Digital Audio Effects, pp. 297–303 (2020)

    Google Scholar 

  22. Nercessian, S., Sarroff, A., Werner, K.J.: Lightweight and interpretable neural modeling of an audio distortion effect using hyperconditioned differentiable biquads. In: Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing 2021-June(2), pp. 890–894 (2021)

    Google Scholar 

  23. van den Oord, A., et al.: WaveNet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 1–15 (2016)

  24. Parker, J.D., Esqueda, F., Bergner, A.: Modelling of nonlinear state-space systems using a deep neural network. In: Proceedings of the 22nd International Conference on Digital Audio Effects, DAFx, pp. 165–172 (2019)

    Google Scholar 

  25. Peussa, A.: State-Space Virtual Analog Modelling of Audio Circuits. Masters thesis, Aalto University, p. 73 (2020)

    Google Scholar 

  26. Ramírez, M.A.M., Benetos, E., Reiss, J.D.: Deep learning for black-box modeling of audio effects. Appl. Sci. (Switzerland) 10(2), 638 (2020)

    Google Scholar 

  27. Rugh, W.J.: Nonlinear System Theory: The Volterra/Wiener Approach. The Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  28. Schmitz, T.: Nonlinear Modeling of the Guitar Signal Chain Enabling its Real-time Emulation. Ph.D. thesis, University of Liège October, 258 (2019)

    Google Scholar 

  29. Schmitz, T., Embrechts, J.J.: Introducing a dataset of guitar amplifier sounds for nonlinear emulation benchmarking. In: AES E-Library, pp. 1–4 (2018)

    Google Scholar 

  30. Schoeffler, M., Bartoschek, S., Stöter, F.R., Roess, M., Edler, B., Herre, J.: webMUSHRA - a comprehensive framework for web-based listening tests. J. Open Res. Software 6, 8 (2018)

    Article  Google Scholar 

  31. Steinmetz, C.J., Reiss, J.D.: Efficient neural networks for real-time analog audio effect modeling. arXiv preprint arXiv:2102.06200 (2021)

  32. Wright, A., Damskägg, E.P., Juvela, L., Välimäki, V.: Real-time guitar amplifier emulation with deep learning. Appl. Sci. (Switzerland) 10(3), 766 (2020)

    Google Scholar 

  33. Wright, A., Damskägg, E.P., Välimäki, V.: Real-time black-box modelling with recurrent neural networks. In: Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19) September, 1–8 (2019)

    Google Scholar 

  34. Wright, A., Välimäki, V.: Perceptual loss function for neural modeling of audio systems. In: Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing 2020-May, pp. 251–255 (2020)

    Google Scholar 

  35. Yeh, D.T.: Digital Implementation of Musical Distortion Circuits by Analysis and Simulation. Ph.D. thesis, Stanford University (2009)

    Google Scholar 

  36. Zhang, Z., Olbrych, E., Bruchalski, J., McCormick, T.J., Livingston, D.L.: A vacuum-tube guitar amplifier model using long/short-term memory networks. In: Conference Proceedings - IEEE SOUTHEASTCON 2018-April, 1–5 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara Vanhatalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vanhatalo, T. et al. (2023). Neural Network-Based Virtual Analog Modeling. In: Legrand, P., et al. Artificial Evolution. EA 2022. Lecture Notes in Computer Science, vol 14091. Springer, Cham. https://doi.org/10.1007/978-3-031-42616-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42616-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42615-5

  • Online ISBN: 978-3-031-42616-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics