Abstract
Construction progress monitoring (CPM) is essential for effective project management, ensuring on-time and on-budget delivery. Traditional CPM methods often rely on manual inspection and reporting, which are time-consuming and prone to errors. This paper proposes a novel approach for automated CPM using state-of-the-art object detection algorithms. The proposed method leverages e.g. YOLOv8's real-time capabilities and high accuracy to identify and track construction elements within site images and videos. A dataset was created, consisting of various building elements and annotated with relevant objects for training and validation. The performance of the proposed approach was evaluated using standard metrics, such as precision, recall, and F1-score, demonstrating significant improvement over existing methods. The integration of Computer Vision into CPM provides stakeholders with reliable, efficient, and cost-effective means to monitor project progress, facilitating timely decision-making and ultimately contributing to the successful completion of construction projects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allan, L., Menzel, K.: Virtual enterprises for integrated energy service provision. In: Camarinha-Matos, L.M., Paraskakis, I., Afsarmanesh, H. (eds.) PRO-VE 2009. IAICT, vol. 307, pp. 659–666. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04568-4_68
Ahmed, A., Ploennigs, J., Gao, Y., et al.: Analysing building performance data for energy-efficient building operation. In: Dikbas, A., Ergen, E., Giritli, H. (eds.) Managing IT in Construction/Managing Construction for Tomorrow, pp. 211–220. Chapman and Hall/CRC, Boca Raton (2009)
Manzoor, F., Linton, D., Loughlin, M., et al.: RFID based efficient lighting control. Int. J. RF Technol. 4, 1–21 (2012). https://doi.org/10.3233/RFT-2012-0036
Menzel, K., Tobin, E., Brown, K.N., Burillo, M.: Performance based maintenance scheduling for building service components. In: Camarinha-Matos, L.M., Paraskakis, I., Afsarmanesh, H. (eds.) PRO-VE 2009. IAICT, vol. 307, pp. 487–494. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04568-4_50
Menzel, K., Eisenblätter, K., Keller, M., et al.: Context-sensitive process and data management on mobile devices. In: Turk, Z., Scherer, R.J. (eds.) eWork and eBusiness in Architecture, Engineering and Construction: Proceedings of the 4th European Conference, Portoroz, Slovenia, pp. 549–554. Swets & Zeitlinger Publishers, Lisse (2002)
Keller, M., Menzel, K., Schapke, S.-E., et al.: Framework zur Referenzmodellierung im Bauwesen. In: Loos, P. (ed.) Kollaboratives Prozessmanagement: Unterstützung kooperations- und koordinationsintensiver Geschäftsprozesse am Beispiel des Bauwesens, 1st edn., pp. 105–124. Logos-Verl, Berlin (2007)
Mohan, N., Gross, R., Menzel, K., et al.: Opportunities and challanges in the implementation of building information modelling for prefabrication of heating, ventilation, and air conditioning systems in small and medium sized contracting companies in germany: a case study. In: Casares J, Mahdjoubi L, Garrigos AG (eds) WIT Transactions on the Built Environment: BIM 2021, [S.l.], pp. 117–126. WIT Press (2021)
Karlapudi, J., Menzel, K., Törmä, S., Hryshchenko, A., Valluru, P.: Enhancement of BIM data representation in product-process modelling for building renovation. In: Nyffenegger, F., Ríos, J., Rivest, L., Bouras, A. (eds.) PLM 2020. IAICT, vol. 594, pp. 738–752. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62807-9_58
Valluru, P., Karlapudi, J., Mätäsniemi, T., Menzel, K.: A modular ontology framework for building renovation domain. In: Camarinha-Matos, L.M., Boucher, X., Afsarmanesh, H. (eds.) PRO-VE 2021. IAICT, vol. 629, pp. 323–334. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85969-5_29
Valluru, P., Karlapudi, J., Menzel, K., Mätäsniemi, T., Shemeika, J.: A semantic data model to represent building material data in AEC collaborative workflows. In: Camarinha-Matos, L.M., Afsarmanesh, H., Ortiz, A. (eds.) PRO-VE 2020. IAICT, vol. 598, pp. 133–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62412-5_11
Menzel, K., Törmä, S., Markku, K., et al.: Linked data and ontologies for semantic interoperability. In: Daniotti, B., Lupica Spagnolo, S., Pavan, A., et al. (eds.) Innovative Tools and Methods Using BIM for an Efficient Renovation in Buildings, pp. 17–28. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04670-4_2
Rashid, K.M., Louis, J.: Times-series data augmentation and deep learning for construction equipment activity recognition. Adv. Eng. Inform 42, 100944 (2019). https://doi.org/10.1016/j.aei.2019.100944. 1474–0346
Shen, R., Huang, A., Li, B., et al.: Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 79, 48–57 (2019). https://doi.org/10.1016/j.jag.2019.03.006. 1569–8432
Zhang, Y., Yuen, K.-V.: Applications of deep learning in intelligent construction. In: Cury, A., Ribeiro, D., Ubertini, F., et al. (eds.) Structural Health Monitoring Based on Data Science Techniques, pp. 227–245. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-81716-9_11
Liu, J., Luo, H., Liu, H.: Deep learning-based data analytics for safety in construction. Autom. Constr. 140, 104302 (2022). https://doi.org/10.1016/j.autcon.2022.104302
Mahami, H., Ghassemi, N., Darbandy, M.T., et al.: Material recognition for automated progress monitoring using deep learning methods. Accessed 21 Apr 2023
Xiong, W., Xu, X., Chen, L., et al.: Sound-based construction activity monitoring with deep learning. Buildings 12, 1947 (2022). https://doi.org/10.3390/buildings12111947. 2075–5309
Elghaish, F., Matarneh, S.T., Alhusban, M.: The application of “deep learning” in construction site management: scientometric, thematic and critical analysis. 22, 580–603 (2021). https://doi.org/10.1108/CI-10-2021-0195.1471–4175
Deng, J., Dong, W., Socher, R., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation IEEE Conference Publication IEEE Xplore. https://ieeexplore.ieee.org/document/6909475. Accessed 21 Apr 2023
Redmon, J., Divvala, S., Girshick, R., et al.: (2016) You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)
He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)
Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc (2017)
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: optimal speed and accuracy of object detection (2020). Accessed 21 Apr 2023
Kopsida, M., Ioannis, B., Vela, P.: A review of automated construction progress monitoring and inspection methods (2015)
Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: Integrated sequential as-built and as-planned representation with D4AR tools in support of decision-making tasks in the AEC/FM industry. J. Constr. Eng. Manag. 137, 1099–1116 (2011). https://doi.org/10.1061/(ASCE)CO.1943-7862.0000371
Acknowledgements
We would like to express our appreciation to Mr. Fang Jian for his contribution to the project. His knowledge and dedication have been instrumental in advancing our understanding of the subject matter and achieving our research objectives. The publication is part of the research project entitled “iECO – Intelligence Empowerment of Construction Industry” which receives funding from Bundesministerium für Wirtschaft und Klimaschutz (BMWK) based on a resolution of the German Bundestag. Authors gratefully acknowledge the support and funding from the BMWK. The content of this publication reflects the author view only and the BMWK is not responsible for any use that may be made of the information it contains.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Yang, J., Wilde, A., Menzel, K., Sheikh, M.Z., Kuznetsov, B. (2023). Computer Vision for Construction Progress Monitoring: A Real-Time Object Detection Approach. In: Camarinha-Matos, L.M., Boucher, X., Ortiz, A. (eds) Collaborative Networks in Digitalization and Society 5.0. PRO-VE 2023. IFIP Advances in Information and Communication Technology, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-031-42622-3_47
Download citation
DOI: https://doi.org/10.1007/978-3-031-42622-3_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42621-6
Online ISBN: 978-3-031-42622-3
eBook Packages: Computer ScienceComputer Science (R0)