Skip to main content

Computer Vision for Construction Progress Monitoring: A Real-Time Object Detection Approach

  • Conference paper
  • First Online:
Collaborative Networks in Digitalization and Society 5.0 (PRO-VE 2023)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 688))

Included in the following conference series:

  • 1208 Accesses

Abstract

Construction progress monitoring (CPM) is essential for effective project management, ensuring on-time and on-budget delivery. Traditional CPM methods often rely on manual inspection and reporting, which are time-consuming and prone to errors. This paper proposes a novel approach for automated CPM using state-of-the-art object detection algorithms. The proposed method leverages e.g. YOLOv8's real-time capabilities and high accuracy to identify and track construction elements within site images and videos. A dataset was created, consisting of various building elements and annotated with relevant objects for training and validation. The performance of the proposed approach was evaluated using standard metrics, such as precision, recall, and F1-score, demonstrating significant improvement over existing methods. The integration of Computer Vision into CPM provides stakeholders with reliable, efficient, and cost-effective means to monitor project progress, facilitating timely decision-making and ultimately contributing to the successful completion of construction projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allan, L., Menzel, K.: Virtual enterprises for integrated energy service provision. In: Camarinha-Matos, L.M., Paraskakis, I., Afsarmanesh, H. (eds.) PRO-VE 2009. IAICT, vol. 307, pp. 659–666. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04568-4_68

    Chapter  Google Scholar 

  2. Ahmed, A., Ploennigs, J., Gao, Y., et al.: Analysing building performance data for energy-efficient building operation. In: Dikbas, A., Ergen, E., Giritli, H. (eds.) Managing IT in Construction/Managing Construction for Tomorrow, pp. 211–220. Chapman and Hall/CRC, Boca Raton (2009)

    Google Scholar 

  3. Manzoor, F., Linton, D., Loughlin, M., et al.: RFID based efficient lighting control. Int. J. RF Technol. 4, 1–21 (2012). https://doi.org/10.3233/RFT-2012-0036

    Article  Google Scholar 

  4. Menzel, K., Tobin, E., Brown, K.N., Burillo, M.: Performance based maintenance scheduling for building service components. In: Camarinha-Matos, L.M., Paraskakis, I., Afsarmanesh, H. (eds.) PRO-VE 2009. IAICT, vol. 307, pp. 487–494. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04568-4_50

    Chapter  Google Scholar 

  5. Menzel, K., Eisenblätter, K., Keller, M., et al.: Context-sensitive process and data management on mobile devices. In: Turk, Z., Scherer, R.J. (eds.) eWork and eBusiness in Architecture, Engineering and Construction: Proceedings of the 4th European Conference, Portoroz, Slovenia, pp. 549–554. Swets & Zeitlinger Publishers, Lisse (2002)

    Google Scholar 

  6. Keller, M., Menzel, K., Schapke, S.-E., et al.: Framework zur Referenzmodellierung im Bauwesen. In: Loos, P. (ed.) Kollaboratives Prozessmanagement: Unterstützung kooperations- und koordinationsintensiver Geschäftsprozesse am Beispiel des Bauwesens, 1st edn., pp. 105–124. Logos-Verl, Berlin (2007)

    Google Scholar 

  7. Mohan, N., Gross, R., Menzel, K., et al.: Opportunities and challanges in the implementation of building information modelling for prefabrication of heating, ventilation, and air conditioning systems in small and medium sized contracting companies in germany: a case study. In: Casares J, Mahdjoubi L, Garrigos AG (eds) WIT Transactions on the Built Environment: BIM 2021, [S.l.], pp. 117–126. WIT Press (2021)

    Google Scholar 

  8. Karlapudi, J., Menzel, K., Törmä, S., Hryshchenko, A., Valluru, P.: Enhancement of BIM data representation in product-process modelling for building renovation. In: Nyffenegger, F., Ríos, J., Rivest, L., Bouras, A. (eds.) PLM 2020. IAICT, vol. 594, pp. 738–752. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62807-9_58

    Chapter  Google Scholar 

  9. Valluru, P., Karlapudi, J., Mätäsniemi, T., Menzel, K.: A modular ontology framework for building renovation domain. In: Camarinha-Matos, L.M., Boucher, X., Afsarmanesh, H. (eds.) PRO-VE 2021. IAICT, vol. 629, pp. 323–334. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85969-5_29

    Chapter  Google Scholar 

  10. Valluru, P., Karlapudi, J., Menzel, K., Mätäsniemi, T., Shemeika, J.: A semantic data model to represent building material data in AEC collaborative workflows. In: Camarinha-Matos, L.M., Afsarmanesh, H., Ortiz, A. (eds.) PRO-VE 2020. IAICT, vol. 598, pp. 133–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62412-5_11

    Chapter  Google Scholar 

  11. Menzel, K., Törmä, S., Markku, K., et al.: Linked data and ontologies for semantic interoperability. In: Daniotti, B., Lupica Spagnolo, S., Pavan, A., et al. (eds.) Innovative Tools and Methods Using BIM for an Efficient Renovation in Buildings, pp. 17–28. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04670-4_2

    Chapter  Google Scholar 

  12. Rashid, K.M., Louis, J.: Times-series data augmentation and deep learning for construction equipment activity recognition. Adv. Eng. Inform 42, 100944 (2019). https://doi.org/10.1016/j.aei.2019.100944. 1474–0346

    Article  Google Scholar 

  13. Shen, R., Huang, A., Li, B., et al.: Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 79, 48–57 (2019). https://doi.org/10.1016/j.jag.2019.03.006. 1569–8432

    Article  Google Scholar 

  14. Zhang, Y., Yuen, K.-V.: Applications of deep learning in intelligent construction. In: Cury, A., Ribeiro, D., Ubertini, F., et al. (eds.) Structural Health Monitoring Based on Data Science Techniques, pp. 227–245. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-81716-9_11

    Chapter  Google Scholar 

  15. Liu, J., Luo, H., Liu, H.: Deep learning-based data analytics for safety in construction. Autom. Constr. 140, 104302 (2022). https://doi.org/10.1016/j.autcon.2022.104302

    Article  Google Scholar 

  16. Mahami, H., Ghassemi, N., Darbandy, M.T., et al.: Material recognition for automated progress monitoring using deep learning methods. Accessed 21 Apr 2023

    Google Scholar 

  17. Xiong, W., Xu, X., Chen, L., et al.: Sound-based construction activity monitoring with deep learning. Buildings 12, 1947 (2022). https://doi.org/10.3390/buildings12111947. 2075–5309

    Article  Google Scholar 

  18. Elghaish, F., Matarneh, S.T., Alhusban, M.: The application of “deep learning” in construction site management: scientometric, thematic and critical analysis. 22, 580–603 (2021). https://doi.org/10.1108/CI-10-2021-0195.1471–4175

  19. Deng, J., Dong, W., Socher, R., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  20. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation IEEE Conference Publication IEEE Xplore. https://ieeexplore.ieee.org/document/6909475. Accessed 21 Apr 2023

  21. Redmon, J., Divvala, S., Girshick, R., et al.: (2016) You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  22. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  23. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc (2017)

    Google Scholar 

  24. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: optimal speed and accuracy of object detection (2020). Accessed 21 Apr 2023

    Google Scholar 

  25. Kopsida, M., Ioannis, B., Vela, P.: A review of automated construction progress monitoring and inspection methods (2015)

    Google Scholar 

  26. Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: Integrated sequential as-built and as-planned representation with D4AR tools in support of decision-making tasks in the AEC/FM industry. J. Constr. Eng. Manag. 137, 1099–1116 (2011). https://doi.org/10.1061/(ASCE)CO.1943-7862.0000371

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to Mr. Fang Jian for his contribution to the project. His knowledge and dedication have been instrumental in advancing our understanding of the subject matter and achieving our research objectives. The publication is part of the research project entitled “iECO – Intelligence Empowerment of Construction Industry” which receives funding from Bundesministerium für Wirtschaft und Klimaschutz (BMWK) based on a resolution of the German Bundestag. Authors gratefully acknowledge the support and funding from the BMWK. The content of this publication reflects the author view only and the BMWK is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Zubair Sheikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Wilde, A., Menzel, K., Sheikh, M.Z., Kuznetsov, B. (2023). Computer Vision for Construction Progress Monitoring: A Real-Time Object Detection Approach. In: Camarinha-Matos, L.M., Boucher, X., Ortiz, A. (eds) Collaborative Networks in Digitalization and Society 5.0. PRO-VE 2023. IFIP Advances in Information and Communication Technology, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-031-42622-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42622-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42621-6

  • Online ISBN: 978-3-031-42622-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics