
Layered controller synthesis for dynamic
multi-agent systems∗

Emily Clement1, Nicolas Perrin-Gilbert1, and Philipp Schlehuber-Caissier2

1 Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique,
ISIR, F-75005 Paris, France lastname@sorbonne-universite.fr

2 EPITA Research Laboratory firstname@lrde.epita.fr

Abstract. In this paper we present a layered approach for multi-agent
control problem, decomposed into three stages, each building upon the
results of the previous one. First, a high-level plan for a coarse abstrac-
tion of the system is computed, relying on parametric timed automata
augmented with stopwatches as they allow to efficiently model simpli-
fied dynamics of such systems. In the second stage, the high-level plan,
based on SMT-formulation, mainly handles the combinatorial aspects
of the problem, provides a more dynamically accurate solution. These
stages are collectively referred to as the SWA-SMT solver. They are cor-
rect by construction but lack a crucial feature: they cannot be executed
in real time. To overcome this, we use SWA-SMT solutions as the initial
training dataset for our last stage, which aims at obtaining a neural net-
work control policy. We use reinforcement learning to train the policy,
and show that the initial dataset is crucial for the overall success of the
method.

1 Introduction

Controlling a system involving multiple agents sharing a common task is a prob-
lem occurring in several domains such as mobile or industrial robotics. Concrete
instances range from controlling swarms of drones, autonomous vehicles or ware-
house robots. The problem is studied for specific instances but remains a difficult
problem in general, especially in safety critical cases. The main complexity stems
from the different types of decisions to take: such control problems often have a
strong combinatorial side while the approach also has to deal with the physical
reality of the agents, whose state typically evolves according to some differential
equation, and limitations on the control inputs have to be taken into account.
Finally, the controller has to be executed in real-time, which typically limits the
applicability of formal methods due to their high complexity.

In this paper, we propose a layered approach for synthesizing control strategies
for multi-agent dynamical systems, whose effectiveness we demonstrate on an
example of centralized traffic guidance used for illustration throughout the paper.

∗This work was partially funded by ANR project TickTac (ANR-18-CE40-0015).

ar
X

iv
:2

30
7.

06
75

8v
1

 [
cs

.A
I]

 1
3

Ju
l 2

02
3

2. RUNNING EXAMPLE: CENTRALIZED TRAFFIC CONTROL

The layered approach involves three stages, each one addressing a specific aspect
of the control problem by building on the results of the previous stage. The
first stage deals with the combinatorial side of the control problem: using a
sufficiently coarse abstraction of the system dynamics, one can rely on timed
automata augmented with stopwatches as a model. Efficient algorithms exist
to explore such models allowing us to find a high-level plan that guarantees
success in this abstract setting. The second stage takes the high-level plan as an
input and refines it using a more realistic model of the system while maintaining
a high degree of similarity between the refined and high-level solution. In our
running example, we formulate this as an SMT problem, respecting the discrete
version of the differential equation describing the system while also taking into
account the input and state constraints. The complexity of this stage remains
reasonable as the combinatorial aspects have already been solved. The final
stage addresses the issue of real-time execution and generalization. To this end,
we train a neural network policy via reinforcement learning. We use the two first
stages to construct a dataset of successful episodes on many random instances
of the problem, and exploit this dataset to guide the reinforcement learning
towards good solutions. On our running example, we show that the initial dataset
of solutions is crucial for the overall success: the reinforcement learning only
succeeds if it has access to it.

The rest of the paper is structured as follows. In section 2 we present our running
example, section 3 briefly discusses related work, and then we describe each stage
of the approach in its own section along with the necessary technical background:
the first stage using timed automata in section 4, the second SMT-based stage in
section 5 and finally the synthesis of the actual controller based on reinforcement
learning in section 6.

2 Running example: centralized traffic control

Let us first present a multi-agent system used as running example (fig 1a) to
illustrate our method throughout the article. In this example, each agent models
a physical car on a road network. Each of the cars is given a fixed path to follow
and it needs to attain its designated goal position from its initial position, while
maintaining a security distance to the other cars. In such a setting the dynamics
can be reduced to a second order ordinary differential equation with lower and
upper bounds on the first and second derivative (corresponding to the speed and
acceleration of the car).

2.1 Multi-agent traffic

Wemodel the traffic as a network of sections on which a fixed number of cars have
to navigate. Cars drive along their paths which consist of a list of sections. Cars
cannot overtake or cross each other on the same section. A minimum security
distance must be maintained at all time.

2

2. RUNNING EXAMPLE: CENTRALIZED TRAFFIC CONTROL

n0 n1 n2

n3

n4 n5n6n7 n8 n9

n10n11

(a) An abstract 2-D representation of
the traffic.

p0 :
n0 n1 n3 n4 n6 n11

p1 :
n1n2 n3 n5 n8 n10

p2 :
n4 n5n6n7 n8 n9

(b) Three different paths p0, p1, p2.

Fig. 1: An abstract representation of our running example, arrows indicate which
direction can be taken.

To define a section, denoted s, we specify its beginning node, nb, its end node,
ne, and its length L. We can therefore write a section s := s[nb,ne],L. To specify
its direction (_ or ^), we augment a section s with a direction d ∈ {_,^} into
a directed section, denoted s, or (s,d). The notion of beginning and end nodes
of a section is extended to directed sections, reversing the two nodes if d =^. A
directed section s′ is a successor (resp. predecessor) of the directed section s
if ne = n′

b (resp. n′
e = nb). The sections s and s′ are said to be neighbours if

s is either a successor or predecessor of s′.

A path p is defined as a finite list of directed sections: p = (sk)0≤k≤m such
that for all k ∈ [0,m− 1], sk+1 is a successor of sk. The end (resp. beginning)
node of a path is the end (resp. beginning) node of its last (resp. first) directed
section. By abuse of notation, we denote s ∈ p if there exists an index k such
that s = sk.

In fig 1b, 3 paths are described: directed sections (s[n4,n6],L,^) and (s[n4,n5],L,_)
are neighbours, but (s[n4,n6],L,_) and (s[n4,n5],L,_) are not.

A car is defined as a tuple of an index i and a path p. A car traffic, denoted C, is
a set of cars. The set of sections (resp. directed sections) of the cars of a car traffic
is denoted S (resp. S). A section s is an intersection if there exist two different
paths p, p′ and two directions d,d′ ∈ {_,^} such that (s,d) ∈ p, (s,d′) ∈ p′.

Let us illustrate again with our example of fig 1 with a car traffic composed of
three cars (i, pi)i=0,1,2. Intersections here are s[n1,n3],L, s[n4,n6],L and s[n5,n8],L.

Since the path of each car is fixed, we only need to keep track of its speed and
its progress along its path.

2.2 Collision avoidance problem

Given a security distance ε, the initial positions of all cars, bounds on their
speed, acceleration and deceleration, the goal is to find trajectories for all cars,
which can be interpreted as a centralized strategy, that respect the three
following rules.

3

2. RUNNING EXAMPLE: CENTRALIZED TRAFFIC CONTROL

Let sect(c, t) (resp. sectd(c, t)) denote the current section (resp. directed section)
of car c at time t and ps(c, t) its current relative position within s.

1. Same directed section: for all cars ci, cj ∈ C, ci ̸= cj , for all t ≥ 0, if
sectd(c, t) = sectd(c

′, t) = s then: |ps(ci, t)− ps(cj , t)| ≥ ε

2. Neighbouring sections: If there exists a section s′ such that there exists two
cars ci = (i, [· · · , (s′,d′

i), · · ·]) ∈ C, and cj = (j, [· · · , (s,dj), (s
′,d′

j), (s
′′,d′′

j), · · ·]) ∈
C sharing the section s′, then:

– If d′
i = d′

j , then for all t, such that sectd(ci, t) = (s′,d′
i) , sectd(cj , t) =

(s′′,d′′
j), we have L′ − p(s′,d′

i)
(ci, t) + p(s′′,d′′

j)
(cj , t) ≥ ε.

– If d′
i ̸= d′

j , then for all t, such that sectd(ci, t) = (s′,d′
i) , sectd(cj , t) = (s,dj),

we have L′ − p(s′,d′
i)
(ci, t) + L− p(s,di)(cj , t) ≥ ε

3. Same section, opposite direction: for all section s ∈ S, for all t ≥ 0 and
for each pair of cars ci, cj ∈ C: ¬(sectd(ci, t) = (s,_) ∧ sectd(cj , t) = (s,^))

2.3 Running example

Let us consider three possible paths, illustrated in fig 1. All sections have the
same security distance ε and the same length, L = 30, except for those from n3

to n5 and n3 to n4 that have length 30
√
2. The cars are defined as (i, p0)i=1,2,3,

(i, p1)i=4,5,6 and (i, p2)i=7,8,9. They all have different initial and goal positions,
starting with a security distance 2ε between them as shown in fig 2. For instance,
the initial position of car 2 is 2ε to the right of n0 in direction of n1. Its goal
position is L − 2ε to the right of n6. All other cars are setup similarly. Let us
precise that, to make the implementation of the car traffic more convenient, we
created additional nodes dedicated to the initial and goal positions of each car,
omitted here for clarity. Therefore in our actual implementation, the section
from n0 to n1 is subdivided with nodes n′

0 and n′′
0 representing the actual initial

positions of car 2 and 3.

0 2ε 4ε L

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

· · ·
n0 n1 n6 n11p0 :

p1 :
n1 · · ·

n2 n8 n10

p2 : · · ·
n7 n6 n8 n9

initial positions goal positions

Fig. 2: Initial and goal position of cars

In the next sections, we present our method and apply it to this problem with
several levels of abstraction. Firstly, in section 4, we conceive a high-level plan
relying on timed automata, assuming that the speed of cars is discretized to two

4

3. RELATED WORK

values, a nominal value v and 0, and that cars can switch between these speeds
instantly.

We also assume that all vehicles must respect the same security distance on all
sections (extending to different speed or security distance between sections is
trivial). Secondly, in section 5, we refine this

abstract model by allowing for arbitrarily many speed levels between v and 0
and also by respecting the maximal values for acceleration and deceleration. In
section 6, there are discrete time steps, but the neural network policy outputs
continuous values for the acceleration/deceleration.

3 Related work

There exists a rich literature on multi-agent systems, including path planning
or controller synthesis. Providing a general overview over these topics is beyond
the scope of this paper, however we give a brief overview of the ones matching
our objective the best. In our model, decisions are taken by a centralized control
agent (the reference trajectories) with perfect knowledge and then executed by
all executing agents (the cars). For a good survey of topics related to multi-agent
systems we refer to [15].

Path planning, collision avoidance and controller synthesis for multi-agent sys-
tems in general as well as centralized traffic control allow for a rich variety
of useful abstraction which in turn leads to a large spectrum of techniques and
concepts that can be applied. Approaches can be differentiated into different cat-
egories: fully discretized approaches largely ignoring the underlying dynamics of
the system fall into the category of multi-agent path finding. Here the problem
boils down to a graph search on (very) large graphs, see [32, 31]. Multi-agent
motion planning in contrast takes into account the underlying the dynamics
(possibly even uncertainty) and works over continuous domains as done in [13].
We are positioned in between these approaches: we consider the dynamics of the
system, however the road system is fixed, so the planning is over a finite domain.

Another way to distinguish approaches is the complexity of the specification. If
the target is known and the only goal is to avoid collision, less formal approaches
ensuring safety and success in practice without a proof can provide good results
as shown in [16, 10]. More complex specifications are taken into account by
works like [26] and [11]. In [26], controllers for drones verifying temporal logic
specifications are synthesized given low-level controllers guaranteeing to bring
them from one region to another exist; collision between different drones is ig-
nored as they are supposed to fly at different altitudes. In [11] controllers for
a fleet of warehouse robots that have to share resources to fulfill different task
in a near optimal manner are learned. Our final layer shares some characteris-
tics of [10]: it does not provide formal guarantees but is executable in real-time.
With [11] we share the idea of a layered approach however to achieve different

5

4. HIGH LEVEL PLANNING

goals. In their work one controller is learned for resource distribution and an-
other for path-planning. Our approach in contrast uses layers to refine plans
with different levels of abstractions. In [27], temporal logic task specifications
are translated into real-valued functions that can be used as reward signals to
guide reinforcement learning.

Finally, there exist also many works tackling explicitly collision avoidance in
traffic scenarios like [23, 21, 22, 14, 28]. The works of [23, 21, 22] rely on dis-
cretization and overapproximation, then proving collision freeness for a given
set controllers and maneuvers in an offline manner. In [14] only intersections
are treated and not the problem of sharing a section while driving in the same
direction. [28] avoids collision by finding an optimal scheduling for the traffic
lights, which is however only applicable in a very restricted scenario.

4 High level planning

Let us present the first level of our method, based on Timed Automata (TA), a
well established tool to model real-time systems with timing constraints using
clocks. Besides time, these clocks can also be used to model other quantities
if they behave somewhat similarly to time in an abstract sense. In our running
example, we assign to each car a clock that tracks its progress along its path. This
basic framework is not expressive enough to obtain a useful model and we need
to use several extensions. We augment the TA with stopwatches to represent the
agent at standstill or driving at nominal speed. We rely on channels to ensure
the collision avoidance and relative order between cars. To obtain reachability
in minimal time, we dedicate a clock to represent global time (therefore never
stopped nor reset), which is used as a parameter that does not appear in the
constraints.

4.1 Timed Automata, stopwatches and channels

In this section we recall standard TA semantics as well as the needed extensions.

Definition 1 ([3]). A Timed Automaton (TA) A can be defined by the tuple
(Q, ℓ0,X , Inv,Σ, T), where Q is a finite set of locations, ℓ0 is the initial location,
X is a finite set of clocks, Σ a finite alphabet, Inv : Q → G (X) is the function
of invariants of locations and T ⊆ Q×G (X)×Σ × 2X ×Q a set of transitions.

There are two types of transitions with the following semantics:

– Time elapsing move: (ℓ, v)
δ−→ (ℓ, v′): elapses some amount of time δ by

setting v′ = v + δ and is only allowed if v |= Inv(ℓ) and v′ |= Inv(ℓ)

– Discrete transition: (ℓ, v) → (ℓ′, v′) indicates a discrete transition. This is
only possible if (1) v |= Inv(ℓ) and v′ |= Inv(ℓ′) and (2) there exists a
transition t := (v, g, a, r, ℓ′) ∈ T such that v |= Inv(ℓ), v |= g, v′ = v [r ← 0]
and v′ |= Inv(ℓ′). We say that t is labelled by a.

6

4. HIGH LEVEL PLANNING

Here, v + δ denotes the valuation vδ such that for any clock x in the set of
clocks, denoted X , vδ(x) = v(x) + δ and v [r ← 0] the valuation vr such that for
vr(x) = 0 if x ∈ r and v(x) otherwise. G (X) defines the set of clock-constraints
by a conjunction of simple (in-) equalities: ∧ix ⋊⋉ ci for some clock x ∈ X , some
constant ci ∈ N and ⋊⋉∈ {≤, <,=, >,≥}. We denote v |= g to express that a
valuation v satisfies the constraint of g ∈ G (X).

Location based Stopwatch Timed Automata (SWA), presented in [2], are
an extension of TA where clocks can be “frozen” on locations. More formally,
it is a tuple A = (Q, ℓ0,X , Inv,Σ,S, T) with Q, ℓ0,X , Inv,Σ, T have the same
definition as in def 1 and S : Q→ 2X is a function assigning to a location ℓ the
set of stopped clocks at ℓ. The definition for discrete transitions is the same as in

def 1, however the time-elapsing transition changes. (ℓ, v)
δ−→ (ℓ, v′): (1) elapses

some amount of time δ by setting v′(x) = v(x) if x ∈ S(ℓ), v(x) + δ otherwise

Reachability of SWA is undecidable in general however, as shown in [19], there ex-
ist decidable fragments like Initialized Stopwatch Timed Automata (ISWA)
for which deciding reachability remains in PSPACE as for TA.

Definition 2 ([19]). Initialized Stopwatch Timed Automata a SWA A is
a (ISWA) if for any transition t = (ℓ, g, a, r, ℓ′), if (x ∈ S(ℓ) ∧ x /∈ S(ℓ′)) or
(x /∈ S(ℓ) ∧ x ∈ S(ℓ′)), then x ∈ r.

That is a clock is only started or stopped if it is also reset. We will show in section
4.2 that our TA abstraction of the running example falls into this category.

Definition 3 ([12]). Channel systems are finite automata augmented with a
finite number of channels. They can be thought of as FIFO (First In First Out)
queues for symbols used for asynchronous communication. During a transition,
we can either (1) Leave the channels untouched (2) Push a symbol into a channel

c, denoted ℓ
c!a−−→ ℓ′ indicating that the symbol a is appended to c. This is always

possible if channels are unbounded, i.e. can contain an unbounded number of

symbols. (3) Peek and pop a symbol from a channel c, denoted ℓ
c?a−−→ ℓ′. This

action looks at the head of c. If it contains the symbol a, it is removed from c
when taking the transition, otherwise the transition is deactivated.

Bounded channel systems, that is channel systems in which channels can only
contain a fixed number of symbols, are decidable. They can be translated into
a finite automaton (with exponentially many locations in both the number of
different symbols and the maximal length of the channel), which can then form
a synchronized product with the other automata.

As a high-level abstraction, we model our example as a parallel composition of
ISWA communicating via strong synchronization augmented by channels.

7

4. HIGH LEVEL PLANNING

4.2 Timed Automata representation of our running example

To model our car traffic with systems of Timed Automata, we suppose that
each car begins/ends at the beginning/end node of a section and that it stops
instantly. Let us describe the automata we generate to model our system with
a simple example. The full construction is detailed in appendix A.

For each car A, the clock xA represents its progress along its path. For each di-
rected section s′ = (s′[ni,nj],L

,d) of its path, A performs three steps correspond-

ing to three locations in the TA: (1) waiting within the section s′ (location ws′)
after entering in s′ (action syncs′(xA)); here the associated clock is stopped,
(2) driving in the section (location ds′), (3) arriving at the end of the section
(location as′) after having traveled a distance of L (resp. letting L time unit
elapses). We represent theses steps in fig 3, in which L0 denotes the accumu-
lated distance to arrive at the end of section s. The timed automaton of car A,
is the concatenation of “sub-automata” of each directed section along the path.
If s′ has no successor (resp. predecessor), as (resp. ds′) is the goal (resp. initial)
location of the automaton.

as ws′ ds′ as′ ws′′

{} {xA} {} {} {xA}

xA = L0

syncs′(xA)

xA = L0

cs′?xA

xA = L0 + L

cs′′ !xA

xA = L0 + L

syncs′′(xA)

Fig. 3: The sub-automaton of our car Timed Automaton

If a section s is indeed an intersection, then multiple copies of its sub-automaton
will be present in the automata of the corresponding cars. In order to ensure that
a trace in this abstract model allows for collision avoidance in the real-world, we
need to synchronize the different copies. To this end we create the intersection
automaton shown in fig 4 for two cars sharing a section in direction _.

fs bs,_ sfs,_

syncs(xB)

xs ← 0

syncs(xA)

xs ← 0

xs = ε

syncs(xB)

xs ← 0

syncs(xA)

xs ← 0

xs = L+ ε

Fig. 4: The intersection automaton of s where A and B can drive in direction _.

8

4. HIGH LEVEL PLANNING

The three states correspond to: free (fs): any car can enter in any direction;
blocked (bs,_): no car can enter; semi-free (sfs,^): an additional car can en-
ter in _ direction. Together with the car automaton it ensures that at least ε
time units pass before two cars can enter the same section in the same direction,
respecting the security distance in an abstract fashion. Similarly, two cars en-
tering the section in opposite direction must be separated by at least L+ ε time
units, allowing the first car to cross the section safely before letting the second
car in, as shown in the appendix A, page 19, in fig 7. Note that all guards only
involve equality testing, which means we could additionally reset the clock to
the same value, making our SWA effectively ISWA.

This ensures the safety distance, however not the relative order between the
cars: To prevent cars from reversing their order in ws′ , cars have to announce
themselves on the successor section by pushing their token on the corresponding
channel cs′′ before entering as′ . By doing so, the transition from waiting to
driving is only activated if the relative order is respected.

4.3 Computing the optimal strategy for reachability

Several mature tools handling timed automata able to answer reachability prob-
lems like IMITATOR ([4]), Uppaal ([7], [8]) Tchecker ([20]) exist. However, at
the time of our experiments, none of them supported all the features we needed:
channels, stopwatches and time optimality.

What would be difficult for a general approach is to detect that a state cannot
lead to a solution faster than the best one found so far, and it would typically lead
to unnecessarily large computation times. This is what motivated us to propose
a specific algorithm for time optimal reachability dedicated to our context.

A time optimal reachability algorithm Our goal is to obtain a time optimal
trace witnessing reachability and use it later to construct our control algorithm.
We propose a Depth First Search (DFS) forward exploration that uses the prop-
erties of our systems of ISWA, synchronized with channels. As we do not use
the full expressiveness of parameters, as defined in Parametric Timed Automata
([24], [6] and [5]) (in our model, they never appear in any guards nor are they
reset) we can compare the obtained traces and store the current best trace that
minimizes the global time. Moreover, we can prune the states during the explo-
ration using a conservative heuristic, leading to significant performance gains.

The full description of our algorithm is presented in appendix B. Here, we give a
very brief overview of its principle. States consist of the configuration (location,
zone representation via Difference Bounded Matrix (DBM)) and the channels’
configuration. We extend the subset relation for zones, denoted ⪯, to bounded
channels: let s, s′ be two states with respective zone z, z′, s ⊑ s′ iff they have
the same location, the same channel configuration and z ⪯ z′ holds. This gives
a partial order on states. As all our guards consist in checking equality, we
can compute the successors by letting time elapse in all locations, until a clock

9

5. ENSURING FEASIBILITY OF HIGH-LEVEL PLANS

matches the equality constraints of the future transition. Finally, we use the
conservative heuristic to detect if the current state implies a necessarily larger
global time, in which case it is discarded.

5 Ensuring feasibility of high-level plans

Our first layer guarantees correctness in the abstract setting, but is in general
not physically realistic/realizable. This gap between the physical reality and
the high-level plan has to be closed, or at least bounded, in order to obtain
an actually feasible plan. We extract important events and their relative order,
which represent the combinatorial part of the problem, and retain it for the
refined solution. We so to speak built upon the high level plan to obtain a more
realistic sequence of inputs which still guarantees correctness.

In our running example, the high-level plan is represented by the time optimal
SWA-trace. Recall that the control input, the current speed of the car, is repre-
sented by the derivative of the clock associated to it. In particular this entails
that the car can only be stopped (derivative equals 0) and the car drives at
nominal speed (derivative equals 1) and there is no time-delay between them
corresponding to infinite acceleration, a hardly realistic assumption.

To provide a more realistic model, we rely on satisfiability modulo theories
(SMT). The SMT framework provides great flexibility and expressiveness result-
ing from the wide range of theories and functionalities disposable: Quantifiers,
Theory of reals, Minimization of an objective function, arrays and functions etc.

For our running example, using these advanced functionalities comes at a very
high cost and we therefore avoid them. We rely on a discretization to allow for
a good trade-off between model accuracy and the complexity of the resulting
problem. Moreover, instead of minimizing the global time using the built-in
minimization functionalities of z3, it has proven to be more effective to perform a
linear search, solving the problem for some given maximal global time repeatedly.

From SWA traces to piecewise linear control laws

The SMT instance for traffic control is composed of one set of constraints directly
derived from the hybrid system and a second set of constraints representing
the high-level plan. We model the traffic system as each car having a piecewise
constant speed and discretize time into N steps of equal duration, that we denote
δt. We create a variable representing the speed of the ith car during the kth time
step, denoted ṽi(k), and denote x̃i(k) the position, in its path, of the car i at
the beginning of the kth timestep. Without loss of generality, we suppose that
δt = 1.

We derive two constraints to guarantee physical realizability under a bounded
error. The position is the integral over the velocities, a simple sum as the ve-
locities are piecewise constant: x̃i(k) =

∑k−1
l=0 ṽi(l). Secondly we need to bound

10

5. ENSURING FEASIBILITY OF HIGH-LEVEL PLANS

acceleration and velocity:

∀i, ∀k ∈ [0 · · ·N − 2], ṽi(k)− dmax ≤ ṽi(k + 1) ≤ ṽi(k) + amax

∀i, ∀k ∈ [0 · · ·N − 1], 0 ≤ ṽi(k) ≤ vmax

where dmax (resp. amax) is the maximal deceleration (resp. acceleration) and
vmax is the maximal speed of the car ensuring a smaller gap between the actual
capabilities of the car and the ones implied by the resulting reference trajectory.

To ensure coherence between the abstract solution represented by the SWA
trace and the refined solution represented by the piecewise constant speed, as
well as to reduce the search space of the SMT variables, we extract several
conditions. Let us denote by p̃0i,s (resp. p̃1i,s) the position at which the ith car
enters (resp. leaves) some section s, which is obviously only defined if the total
trajectory of the ith car passes through section s.

Relative event order We want to ensure that important events happen in the
same chronological order as given by the SWA trace. Important events, in our
running example, are the moments when cars enter or leave a section. We impose
the constraints for each pair of car and event. Suppose car i enters (resp. leaves)
the section s before car j enters (resp. leaves) section s′, this can be imposed by:

∀k ∈ [0 · · ·N − 2],∀e ∈ {0, 1}, x̃i(k) < p̃ei,s =⇒ x̃j(k) < p̃ej,s′

Safety distance Whenever a car uses an intersection, we need to ensure that it
respects a security distance, denoted ε, from the other cars, even if the two cars
are not currently sharing a section. Suppose ci enters section s before cj , then
for any k ∈ [0 · · ·N − 2]:

(p̃0i,s ≤ x̃i(k) ≤ p̃1i,s∧ p̃0j,s ≤ x̃j(k) ≤ p̃1j,s) =⇒ ((x̃i(k)− p̃0i,s)−(x̃j(k)− p̃0j,s) > ε)

Approximate timing To further restrict the search space for the SMT problem
and to increase the similarity between the abstract and refined solution, we do
not only keep the relative order between important events, but we also impose
that they happen at approximately the same global time.

To do this, we introduce a parameter p, which limits the difference between the
global time at which an important event happens in the high-level plan and the
refined plan. This permits a trade-off between the similarity of the high-level,
the refined plan and the danger of the SMT instance becoming unsatisfiable
(smaller value for p implies higher similarity however the high-level plan may be
infeasible for the more realistic model rendering the SMT instance unsatisfiable).

More formally, consider the important event of ci entering s at the global time
t0. To ensure that the event will actually happen at most p time-units later, we
impose: x̃i(t0 + p) ≥ p̃0i,s, since the duration of each step equals 1 (w.l.o.g.).

Interpreting the solution If a satisfying solution for the SMT instance is
found, we can readily extract the refined plan from it. All information necessary
are the speed values for each time-step and car, i.e. the value for all the ṽi(k).

11

6. REINFORCEMENT LEARNING TO GET REAL-TIME POLICIES

6 Reinforcement learning to get real-time policies

Our global approach is divided into 3 stages, and in the previous sections we have
presented the 2 first stages, which correspond to distinct levels of abstraction of
the multi-agent system we want to control. The solver presented in the two first
stages in section 4 and 5 are collectivelly called SMT-SWA solver. Given initial
conditions of the system, these two stages enable us to get trajectories for all
agents that solve the problem, but not in real-time, so if new initial conditions
are faced at a high frequency, and if a high responsiveness is required, then the
approach is not practical. For the third stage of our layered approach, which we
present in this section, we create a dataset of SWA-SMT solutions on a large
number of random instances of the problem, and use this dataset as the initial
experience replay buffer of a reinforcement learning (RL) algorithm. Thereby
we will first obtain a policy that imitates and slightly generalizes the SWA-SMT
solutions, and will then progressively improve. At the end of the learning process,
we get a neural network policy that can react in real-time to new conditions
and can control the multi-agent system with a high success rate. We could also
try to directly solve the multi-agent control problem with RL, with an initially
empty experience replay buffer, but with our running example we show that
for complex problems, the SWA-SMT solutions are crucial: without the initial
dataset, the RL algorithm fails to find any solution to the problem, while with
the initial dataset, the RL algorithm quickly matches and then outperforms the
success rate of the SWA-SMT approach. In fact, RL algorithms are efficient
at progressively improving control policies based on a dense reward signal, but
problems with both continuous and combinatorial aspects may result in rewards
that are very difficult to find. Multi-agent systems often have these properties,
and the associated hard exploration problems are well known failure cases for
standard reinforcement learning algorithms [9]. We believe that in this context, a
layered approach as the one presented in this paper can be particularly efficient.
Using high level abstractions and formal verification, we ignore most of the
continuous aspects of the problem, but solve its the most combinatorial and
discrete parts, and get traces that can be refined into acceptable solutions. We
then build a dataset that can be exploited by reinforcement learning to quickly
get good policies, and then iteratively improve them.

To apply reinforcement learning, we cast the problem as a Markov Decision
Process (MDP) with a state space S, an action space A, an initial state distri-
bution p(s0 ∈ S), a reward function r(st ∈ S, at ∈ A, st+1 ∈ S) and transition
dynamics p(st+1 ∈ S|st ∈ S, at ∈ A). Since the running example we consider
is deterministic, we more specifically use a deterministic transition function:
st+1 = step(st, at). In this MDP, valid SWA-SMT trace should be directly in-
terpretable as high reward episodes. See appendix C for a detailed description
of the elements of the MDP for our running example.

Using the initial state distribution, we define random instances of the problem,
and run the SWA-SMT solver to get valid solutions, i.e. traces. We then trans-
form each trace into an episode of the MDP. To do so, we first retrieve the

12

6. REINFORCEMENT LEARNING TO GET REAL-TIME POLICIES

sequence of states and actions (see appendix C for details), then we compute
the reward for all transitions of the episode, and we terminate the episode if a
terminal state is reached (which happens only at the end because we only con-
sider successful traces). The episodes we get correspond exactly to episodes of
the MDP previously defined (again, see appendix C for details). We should dis-
card episodes exceeding the maximum number of transitions (85), but we have
set this number conservatively so that the time optimal SWA-SMT solutions are
always shorter than the limit.

For our running example, we used the SWA-SMT solver on random initial states
to generate 2749 successful episodes (with reward ≥ 2000, see appendix C) re-
sulting in a total number of 176913 transitions. About 15% of the random initial
conditions were solved by the SWA-SMT solver and led to successful traces.3

For the reinforcement learning, we select off-policy algorithms [30] that use a
replay buffer to store experience (episode transitions). During training, random
batches of transitions are sampled from the buffer, and gradients of loss functions
computed on these batches are used to iteratively update the parameters of
neural networks (typically the policy network or actor and the value network
or critic). New episodes are continuously run with the trained policy to fill the
buffer. We compare two approaches, one in which an RL algorithm is trained
from scratch (with an initially empty replay buffer), and one in which an RL
algorithm starts with its replay buffer filled with the 176913 transitions collected
from the SWA-SMT solutions. More specifically, to perform RL form scratch, we
first use TD3 [18], a popular off-policy reinforcement learning algorithm, whereas
TD3BC [17] is used to perform RL with the replay buffer. TD3BC is TD3 with a
slight modification: in the actor loss, a regularization term of behavioral cloning is
added, helping the RL algorithm to handle and imitate expert training data that
does not come from the trained policy. Originally designed for offline RL (i.e. RL
on purely offline data, without running episodes), TD3BC can also be seen as a
variant of TD3 that is able to start with a non-empty replay buffer initialized
with expert data. We use exactly the same hyperparameters for TD3 and TD3BC
(see appendix D), and for the additional behavioral cloning regularization term in
TD3BC, we use the default parameter α = 2.5 (cf. [17]). Fig 5 show the results we
obtained with a training of 3 million steps on 5 random seeds for each method4.
We define successful episodes as episodes with a cumulated reward greater than
2000, which only happens when each car reaches its final destination. We observe
that the first approach (TD3 from scratch) never learns to solve the problem.
On the other hand, after 250k steps (one step is one discrete time step in an
episode play with the neural network policy being trained), the second approach

3Generating a successful SWA-SMT trace takes on average about 15sec on a Intel
i5-1235u with 16GB of RAM. Note that there is a high variance in this runtime ranging
from under a second to several minutes. A timeout was set to 900sec.

4Using the xpag RL library [29], with a single Intel Core i7 CPU, 32GB of RAM,
and a single NVIDIA Quadro P3000 GPU, the training took between 40 and 50 minutes
per million steps.

13

7. CONCLUSION AND FUTURE WORK

(TD3BC) already reaches the same success rate as the SWA-SMT solver (about
15%), and then it continues to improve during the 3 million steps of training. In
the end, we obtain neural network policies with a success rate of approximately
35% in average, which is more than twice the success rate of the SWA-SMT
solver. So we not only obtain policies that can be executed in real-time, we also
obtain policies that find solutions more consistently.

However, while the SWA-SMT solutions are optimal by construction (i.e. they
achieve success with the minimum number of steps), there is no such guarantee
with the neural network policies trained via reinforcement learning. Fig 6 shows
an episode played by a neural network policy trained with TD3BC. A full video
of this episode and a few others is hosted at perso.eleves.ens-rennes.fr/

people/Emily.Clement/Implementation/multi-agent.html The tool we im-
plemented in open-source and can be found at gitlab.com/Millly/robotic-
synthesis.

Fig. 5: Percentage of successful episodes during training.

7 Conclusion and future work

We presented a layered approach for multi-agent control involving three stages,
the two first ones relying on formal verification tools to compute time optimal
solutions, and the last one relying on these solutions (called the SWA-SMT data)
to guide a reinforcement learning algorithm. We demonstrated the effectiveness

14

perso.eleves.ens-rennes.fr/people/Emily.Clement/Implementation/multi-agent.html
perso.eleves.ens-rennes.fr/people/Emily.Clement/Implementation/multi-agent.html
gitlab.com/Millly/robotic-synthesis
gitlab.com/Millly/robotic-synthesis

7. CONCLUSION AND FUTURE WORK

4

4

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

 all vehicles
 continue to

their destination

 the vehicle 1
 waits for the
 vehicle 2 to
 pass

 the vehicle 5
 slows down

 to let the
vehicle 6 pass

the vehicle 3
 slows down
 to let the

 vehicle 6

 pass

1

1

1

1

2

2

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

5

5

5

5 5

5

5

5
5

5

5

6

6

6

6 6

6

6

6 6

6

6

7

7

7

7 7

7

7

7 7

7

7

8

8

8

8 8

8

8

8 8

8

9

9

9

9

9

9

Fig. 6: A successful episode played by a policy trained with TD3BC.

of the approach by applying it to a centralized traffic control problem, showing
that, thanks to the SWA-SMT data, the RL algorithm quickly learns to solve the
problem and progressively improves to obtain higher success rates. Our results
demonstrate the potential of combining layered approaches with RL for multi-
agent control. The high-level abstraction in the first stage places emphasis on the
combinatorial elements of the problem, leading to high-level plans which are then
refined into solutions addressing the actual continuous dynamics of the agents.
While it is difficult to construct these solutions in real-time, a rich enough dataset
of such solutions can be used to efficiently guide the reinforcement learning, thus
eliminating the need for the RL algorithm to tackle the difficult task of exploring
the combinatorial aspects of the multi-agent control problem. Ultimately, we
obtain a neural network policy capable of controlling the multi-agent system in
real-time. In future work, we would like to implement our proposed algorithm
for time optimal reachability in ISWA with bounded channels in the open-source
tool TChecker [20], and apply our layered approach to decentralized multi-agent
systems.

15

7. CONCLUSION AND FUTURE WORK

References

[1] Luis B Almeida. “C1.2 Multilayer perceptrons”. In: Handbook of Neural
Computation C 1 (1997).

[2] R. Alur et al. “The algorithmic analysis of hybrid systems”. In: Theoretical
Computer Science. Hybrid Systems 138.1 (1995), pp. 3–34. issn: 0304-
3975. doi: 10.1016/0304-3975(94)00202-T. url: https://www.scie
ncedirect.com/science/article/pii/030439759400202T (visited on
03/10/2023).

[3] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theo-
retical Computer Science 126.2 (1994), pp. 183–235. issn: 0304-3975. doi:
https://doi.org/10.1016/0304- 3975(94)90010- 8. url: https:
//www.sciencedirect.com/science/article/pii/0304397594900108.

[4] Étienne André. “IMITATOR 3: Synthesis of Timing Parameters Beyond
Decidability”. In: Computer Aided Verification - 33rd International Con-
ference (CAV 2021). Vol. 12759. Lecture Notes in Computer Science. Springer,
2021, pp. 552–565. doi: 10.1007/978-3-030-81685-8_26. url: https:
//doi.org/10.1007/978-3-030-81685-8%5C_26.

[5] Étienne André. “What’s decidable about parametric timed automata?”
In: International Journal on Software Tools for Technology Transfer 21.2
(2019), pp. 203–219.

[6] Étienne André, Didier Lime, and Olivier H Roux. “Decision problems
for parametric timed automata”. In: Formal Methods and Software En-
gineering: 18th International Conference on Formal Engineering Methods,
ICFEM 2016, Tokyo, Japan, Proceedings 18. Springer. 2016, pp. 400–416.

[7] Gerd Behrmann et al. “UPPAAL 4.0”. In: Third International Conference
on the Quantitative Evaluation of Systems (QEST 2006), Riverside, Cal-
ifornia, USA. IEEE Computer Society, Sept. 2006, pp. 125–126. doi: 10.
1109/QEST.2006.59. url: https://doi.org/10.1109/QEST.2006.59.

[8] Gerd Behrmann et al. “UPPAAL-Tiga: Time for Playing Games!” In: Pro-
ceedings of the 19th International Conference on Computer Aided Verifi-
cation (CAV’07). Vol. 4590. Lecture Notes in Computer Science. Springer-
Verlag, 2007, pp. 121–125.

[9] Marc Bellemare et al. “Unifying Count-Based Exploration and Intrin-
sic Motivation”. In: Advances in Neural Information Processing Systems.
Vol. 29. 2016. url: https://proceedings.neurips.cc/paper_files/
paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf.

[10] Jur P. van den Berg, Ming C. Lin, and Dinesh Manocha. “Reciprocal Veloc-
ity Obstacles for real-time multi-agent navigation”. In: 2008 IEEE Inter-
national Conference on Robotics and Automation, ICRA 2008, Pasadena,
USA. 2008, pp. 1928–1935. doi: 10.1109/ROBOT.2008.4543489. url:
https://doi.org/10.1109/ROBOT.2008.4543489.

[11] Simon Bøgh et al. “Distributed Fleet Management in Noisy Environments
via Model-Predictive Control”. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling. Vol. 32. 2022, pp. 565–
573.

16

https://doi.org/10.1016/0304-3975(94)00202-T
https://www.sciencedirect.com/science/article/pii/030439759400202T
https://www.sciencedirect.com/science/article/pii/030439759400202T
https://doi.org/https://doi.org/10.1016/0304-3975(94)90010-8
https://www.sciencedirect.com/science/article/pii/0304397594900108
https://www.sciencedirect.com/science/article/pii/0304397594900108
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1007/978-3-030-81685-8%5C_26
https://doi.org/10.1007/978-3-030-81685-8%5C_26
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://doi.org/10.1109/ROBOT.2008.4543489
https://doi.org/10.1109/ROBOT.2008.4543489

7. CONCLUSION AND FUTURE WORK

[12] Daniel Brand and Pitro Zafiropulo. “On Communicating Finite-State Ma-
chines”. In: J. ACM 30.2 (1983), pp. 323–342. doi: 10.1145/322374.
322380. url: https://doi.org/10.1145/322374.322380.

[13] Jingkai Chen et al. “Scalable and safe multi-agent motion planning with
nonlinear dynamics and bounded disturbances”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 35. 13. 2021, pp. 11237–
11245.

[14] Alessandro Colombo and Domitilla Del Vecchio. “Efficient algorithms for
collision avoidance at intersections”. In: Hybrid Systems: Computation and
Control, HSCC’12, Beijing, China. Ed. by Thao Dang and Ian M. Mitchell.
2012, pp. 145–154. doi: 10.1145/2185632.2185656. url: https://doi.
org/10.1145/2185632.2185656.

[15] Ali Dorri, Salil S Kanhere, and Raja Jurdak. “Multi-agent systems: A
survey”. In: Ieee Access 6 (2018), pp. 28573–28593.

[16] Paolo Fiorini and Zvi Shiller. “Motion Planning in Dynamic Environments
Using Velocity Obstacles”. In: Int. J. Robotics Res. 17.7 (1998), pp. 760–
772. doi: 10.1177/027836499801700706. url: https://doi.org/10.
1177/027836499801700706.

[17] Scott Fujimoto and Shixiang Shane Gu. “A minimalist approach to offline
reinforcement learning”. In: Advances in neural information processing sys-
tems 34 (2021), pp. 20132–20145.

[18] Scott Fujimoto, Herke Hoof, and David Meger. “Addressing function ap-
proximation error in actor-critic methods”. In: International conference on
machine learning. PMLR. 2018, pp. 1587–1596.

[19] Thomas A. Henzinger et al. “What’s Decidable about Hybrid Automata?”
In: J. Comput. Syst. Sci. 57.1 (1998), pp. 94–124. doi: 10.1006/jcss.
1998.1581.

[20] Frédéric Herbreteau and Gerald Point. The TChecker tool and librairies.
url: https://github.com/ticktac-project/tchecker.

[21] Martin Hilscher, Sven Linker, and Ernst-Rüdiger Olderog. “Proving Safety
of Traffic Manoeuvres on Country Roads”. In: Theories of Programming
and Formal Methods - Essays Dedicated to Jifeng He on the Occasion of
His 70th Birthday. Vol. 8051. Lecture Notes in Computer Science. Springer,
2013, pp. 196–212. doi: 10.1007/978-3-642-39698-4_12. url: https:
//doi.org/10.1007/978-3-642-39698-4%5C_12.

[22] Martin Hilscher and Maike Schwammberger. “An Abstract Model for Prov-
ing Safety of Autonomous Urban Traffic”. In: Theoretical Aspects of Com-
puting - ICTAC 2016 - 13th International Colloquium, Taipei, Taiwan,
ROC, Proceedings. Vol. 9965. Lecture Notes in Computer Science. 2016,
pp. 274–292. doi: 10.1007/978- 3- 319- 46750- 4_16. url: https:
//doi.org/10.1007/978-3-319-46750-4%5C_16.

[23] Martin Hilscher et al. “An Abstract Model for Proving Safety of Multi-lane
Traffic Manoeuvres”. In: Formal Methods and Software Engineering - 13th
International Conference on Formal Engineering Methods, ICFEM 2011,
Durham, UK, Proceedings. Vol. 6991. Lecture Notes in Computer Science.

17

https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/2185632.2185656
https://doi.org/10.1145/2185632.2185656
https://doi.org/10.1145/2185632.2185656
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://github.com/ticktac-project/tchecker
https://doi.org/10.1007/978-3-642-39698-4_12
https://doi.org/10.1007/978-3-642-39698-4%5C_12
https://doi.org/10.1007/978-3-642-39698-4%5C_12
https://doi.org/10.1007/978-3-319-46750-4_16
https://doi.org/10.1007/978-3-319-46750-4%5C_16
https://doi.org/10.1007/978-3-319-46750-4%5C_16

7. CONCLUSION AND FUTURE WORK

Springer, 2011, pp. 404–419. doi: 10.1007/978-3-642-24559-6_28.
url: https://doi.org/10.1007/978-3-642-24559-6%5C_28.

[24] Thomas Hune et al. “Linear parametric model checking of timed au-
tomata”. In: The Journal of Logic and Algebraic Programming 52 (2002),
pp. 183–220.

[25] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization.” In: ICLR (Poster). 2015. url: http://dblp.uni-trier.
de/db/conf/iclr/iclr2015.html#KingmaB14.

[26] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. “Where’s
Waldo? Sensor-Based Temporal Logic Motion Planning”. In: 2007 IEEE
International Conference on Robotics and Automation, ICRA 2007, 10-14
April 2007, Roma, Italy. IEEE, 2007, pp. 3116–3121. doi: 10.1109/ROBOT.
2007.363946. url: https://doi.org/10.1109/ROBOT.2007.363946.

[27] Xiao Li, Yao Ma, and Calin Belta. “A policy search method for temporal
logic specified reinforcement learning tasks”. In: 2018 Annual American
Control Conference (ACC). IEEE. 2018, pp. 240–245.

[28] Sarah M. Loos and André Platzer. “Safe intersections: At the crossing of
hybrid systems and verification”. In: 14th International IEEE Conference
on Intelligent Transportation Systems, ITSC 2011, Washington, DC, USA.
IEEE, 2011, pp. 1181–1186. doi: 10.1109/ITSC.2011.6083138. url:
https://doi.org/10.1109/ITSC.2011.6083138.

[29] Nicolas Perrin-Gilbert. xpag: a modular reinforcement learning library with
JAX agents. 2022. url: https://github.com/perrin-isir/xpag.

[30] Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. “Off-policy temporal-
difference learning with function approximation”. In: ICML. 2001, pp. 417–
424.

[31] Arthur Queffelec. “Connected Multi-Agent Path Finding: How Robots
Get Away with Texting and Driving.” PhD thesis. University of Rennes,
France, 2021. url: https://tel.archives-ouvertes.fr/tel-03517091.

[32] Roni Stern. “Multi-agent path finding–an overview”. In: Artificial Intelli-
gence: 5th RAAI Summer School, Dolgoprudny, Russia, July 4–7, 2019,
Tutorial Lectures (2019), pp. 96–115.

18

https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-642-24559-6%5C_28
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#KingmaB14
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#KingmaB14
https://doi.org/10.1109/ROBOT.2007.363946
https://doi.org/10.1109/ROBOT.2007.363946
https://doi.org/10.1109/ROBOT.2007.363946
https://doi.org/10.1109/ITSC.2011.6083138
https://doi.org/10.1109/ITSC.2011.6083138
https://github.com/perrin-isir/xpag
https://tel.archives-ouvertes.fr/tel-03517091

A. DESCRIPTION OF THE SYSTEMS OF TIMED AUTOMATA OF FOR
CAR TRAFFIC CONTROL

A Description of the systems of Timed Automata of for
car traffic control

An example

Let us first fully describe the intersection automata of section s, presented in
section 4.2 if we add a car, called C, where the directed section (s,^) appears
in its path.

fs

bs,_ sfs,_

bs,^ sfs,^

sy
nc s

(xB
)

xs
← 0

syncs(xA)

xs ← 0

xs = ε

syncs(xB)

xs ← 0

syncs(xA)

xs ← 0

xs = L+ ε

sync
s (xC)

xs ← 0
xs = ε

syncs(xC)

xs ← 0

xs = L+ ε

Fig. 7: An intersection automaton of a section s such that A and B can drive in
s in direction _ and C can drive in direction ^.

Construction of the system of ISWA

We have two types of timed automata in our system: automata representing cars
and automata representing intersections.

Clocks and parameter We use a parameter, which never appears in any guard,
invariant or reset, to represent the global time, we denote it t. To describe the
progression of each car, we assign, for each car c, a clock, denoted xc representing
c’s position along its path. We also assign a clock for each intersection s that we

19

A. DESCRIPTION OF THE SYSTEMS OF TIMED AUTOMATA OF FOR
CAR TRAFFIC CONTROL

denote xs. xs is common for both direction. This clock represents the following
value: the value of ps(c, t), where c is the car that is closest to the beginning of
the section (whatever direction is used).

Channels To report the presence of a car in a section, each section is assigned a
channel. Each time a car wants to enter a section, we push its name as symbol in
the channel before entering it, where entering it means accessing the associated
waiting state. To be able to drive within the section, we must be able to read its
symbol in the channel, that means that this car is the first entered the section
among all entered cars. This ensures that a car does not overtake another car.

Automata of cars Let c = (sk,dk)0≤k≤m a car of C. We assigned a clock,
denoted xc to this car.

•Locations: for each directed section s, a car can either drive in s, have reached
the end of s and wait in s. In the last case, we model the waiting state by
assigning a stopwatch for xc.

•Transitions: a car can change from waiting to driving in the same section,
from driving to arriving and finally from arriving to waiting (to the next
section). 1) From waiting to driving, the condition to respect is that xc is
equal to the value of the xc when entering in s. Additionally, we need to
respect the order constraint imposed by the channel. 2) From driving to
arriving, the clock xc must have increased by L (length of the section s) and
we push the name of the car in the channel dedicated to this section. 3) From
arriving to waiting in the next section, the clock must not have increased
and need to synchronize with the intersection automaton if the successor
section is an intersection.

Automata of intersection section To drive in a section, we have to check
beforehand that our car will not collide with another in an abstract section. As
each speed is equal between the cars, we can easily check this. For this, the clock
associated to the section, xs is reset each time a new car enters the intersection.

The automaton of s is composed of three or five locations, depending on whether
the cars can travel in one or both directions:

•Blocked Location: no cars can enter.

•Semi-free location: a (unique) car can enter, if it is in the same direction.

•Free location: any car can enter, regardless of its direction.

From a Blocked location, we must allow time, equal to the safety distance, to
elapse. When this amount of time has elapse, we pass a transition from Blocked
to Semi-free location, with the same direction.

Again, from a semi-free location, we have two choices: either another car (with
the same direction) enters, reseting the clock and we arrive in a blocked location

20

B. REACHABILITY ALGORITHM FOR ISWA SYNCHRONIZED WITH
CHANNELS

(with the same direction), or we let time elapse (equals to the length addition
with the security distance) and we arrive in Free location.

To indicate a car c enters, the action from semi-free (or free) to blocked, is a
synchronized action with the one activated in the automaton of car c, when c
enters in the intersection section. Therefore, each automaton of an intersection
section has synchronized actions with all cars that will eventually enter in this
section.

B Reachability algorithm for ISWA synchronized with
channels

Our Depth First Search based algorithm allows us to obtain a time optimal trace
for reachability. To do so, we store the fastest trace found so far and compare
candidates to this solution during the exploration. Let us describe precisely our
algorithm.

We begin by initializing several variables:

– a set of explored states, called explored. It stores all the states the algorithm
has explored yet, in order to avoid exploring a state twice. It is initialized as
the empty set.

– bestSol= (bestSolTime, bestSolTrace) a tuple of the total time spent
to reach the goal, bestSolTime, and the trace of the run, bestSolTrace.
It represents the best solution found at each step of the algorithm. It is
therefore naturally initialized at (+∞, None) so that any first trace found be
better than it.

– An initial state, s0 which is a tuple of all the initial configurations (locations
and valuations) of the Timed Automata of our system of ISWA.

– a stack, denoted stack, which stores pairs of state and the possible successors
of this state. The stack is initialized with s0 and the iterator of the successors
of s0.

In our algorithm, we explore the future states, computed by the function succ. If
and when we reach the goal state, i.e. when all the goal locations of our system
of timed automata are reached, we compare the trace of this run with the last
stored trace. If the global time is smaller, we replace the stored trace by the
trace of our current run.

A conservative heuristic is used to avoid exploring states guaranteed to produce
traces that are not time optimal.

Let us detail some very useful sub-functions of our algorithm 1.

• isFinal: the helper function isFinal determines whether the target location
has been reached.

21

B. REACHABILITY ALGORITHM FOR ISWA SYNCHRONIZED WITH
CHANNELS

explored← {}; /* Set of explored states */

bestSolTrace← None; /* Best solution so far */

bestSolT ime←∞; /* Time of bestSol */

s0 ← init(); /* Initial state */

stack ← (); /* Stack pair(state, successors iterator) */

stack.push((s0, succ(s0, None)))
while stack is not empty do

currState, currSucc← stack.pop();
nextState← succ(currState, currSucc);
if nextState is None then

continue ; /* No more successors */

end
stack.push((currState, nextState));
if isF inal(nextState) then

if minGlobT ime(nextState) < bestSolT ime then
bestSolTrace← traceOf(stack, nextState);
bestSolT ime← minGlobT ime(nextState)

end
continue; /* Global time can only grow → Ignore successors */

end
if ∃ s ∈ explored s.t. nextState ⊑ s then

continue; /* The subsequent state has already been explored */

end
if not keepExploring(nextState) then

continue; /* Conservative heuristic */

end
stack.push((nextState,None));

end
return bestSol;

Algorithm 1: Time optimal reachability

•minGlobTime: the helper function minGlobTime extracts the minimal value
for the global time with which the target can be reached from the zone.

Since we are only interested in the fastest trace and the global time is never
stopped nor reset, we do not need to visit the successor states of an accepting
state.

• keepExploring: To speed up the algorithm, we use the function keepExploring
as a heuristic to determine whether it is worth to keep exploring the currently
state. In order to ensure correctness of the algorithm, this function needs to be
conservative. Meaning that it may never discard a state for which, if the explo-
ration had continued, an accepting trace faster than the currently best solution
could be found.

In our running example, this function sums the current global time plus the
maximal difference between any current car position and its respective goal po-

22

C. MARKOV DECISION PROCESS FOR THE RUNNING EXAMPLE

sition. Intuitively this function computes the time it would take for all cars to
arrive if collisions can be ignored from the current situation on. Naturally this
heuristic is therefore conservative.

• succ: The succ function computes, given a current state currState and the
associated successor iterator currSucc, the next successor to explore, denoted
nextState.

To compute it, we use the special properties of our model.

In our system, described in appendix A, the constraints of our timed automata
only contain equality tests of the form x == x0 where x is a clock of the system
of timed automata and x0 is a constant.

Therefore, we do not need to represent zones, but simple valuations contain
all information necessary; to compute the delay that elapses before taking the
next transition, we just have to compute the minimal delay between all the
possibilities.

More precisely, we have these following situations:

– A transition in a car-automaton can be taken.

If this car is in a waiting location, there are two possibilities: the car takes
the transition or it waits until at least another transition is taken in the
whole system.

Otherwise, the transition is taken, as there is no stopwatch.

– In an intersection-automaton, we can be in these three type of locations:

1. If the location is a Free location, then the choice depends on the car-
automaton.

2. If the location is a Blocked Location, the transition is taken and it “semi-
frees” the intersection, as described in appendix A.

3. If the location is a Semi-free location, two choices are possible: another
car asks to enter or the time has elaspe enough to pass to a Free location.

C Markov Decision Process for the running example

The Markov Decision Process is defined by its state space S, action space A,
initial state distribution p(s0 ∈ S), reward function r(st ∈ S, at ∈ A, st+1 ∈ S)
and deterministic transition function st+1 = step(st, at).

We describe here all the elements of the MDP defined for our running example:

– The state space (R720). The environment contains 3 paths, which are
unions of sections, and as detailed in section 2, we have imposed a maximum
number of 3 cars per path, so there are at most 9 cars, to which we can

23

C. MARKOV DECISION PROCESS FOR THE RUNNING EXAMPLE

attribute a unique identifier (we use {−1, 0, 1}2). The state is entirely defined
by the speed and position of each car. We could thus use vectors of size 18 to
represent states, but instead we chose a sparser representation with a better
structure. To remain coherent, we use the same road network presented in
sec. 2 which is composed of 24 section (since every car has a dedicated initial
and goal node subdividing the sections containing initial and goal positions).
On this road network, three different paths are defined, and each section
being shared by at most 2 paths. At any given time any section may contain
at most 6 cars by construction. For each section, we define a list of 6 tuples,
all equal to (0, 0, (0, 0), 0) if no car is currently inside the section. However
if there are cars in the section, say 2 cars for example, then the first two
tuples have this structure:

(position with the section, normalized velocity, car identifier, 1)

We represent states as a concatenation of the values of all these tuples for
all the 24 sections, which amounts to a vector of size 720. It is a sparse
representation, but its advantage is that it makes it easy to find cars close
to each other, as they are either in the same section or in neighbor sections.

– The action space (R9) and transition dynamics. Given an ordering
of the 9 cars, an action is simply a vector of 9 accelerations. If ai is the
acceleration for the car i, and if at the current time step its position within
its path is pi, and its speed is vi, then at the next time step its position will
be pi+ vi, and its speed will be vi+ ai. This defines the transition dynamics
of the MDP. The components of an action corresponding to cars that are not
present in the state are simply ignored. Remark: actions can be computed
straightforwardly from a sequence of states as they are equal to the difference
between consecutive speeds for each car.

– The reward. When all cars have reached their destination, i.e. crossed the
end of their path, a reward of 2000 is given, and the episode is terminated.
Besides, when there is either a collision (a violation of the safety distance
between two cars) or two car facing each other in opposite directions in the
same section, a negative reward (-100) is given and the episode is terminated.
Finally, at each time step, two positive rewards are given, one proportional
to the average velocity of the cars (to encourage cars to go fast), and one
proportional to the (clamped) minimum distance between all cars (to en-
courage cars to stay far from each other). We set the maximum number of
time step per episode to 85, and adjust these rewards so that an episode
cannot reach a cumulated reward of 2000 unless it is truly successful and
gets the final +2000 reward.

– The initial state distribution. We define an arbitrary initial state dis-
tribution in which each of the 9 cars has an 80% chance of being present.
The speed of each car is defined randomly, and positions are also defined
randomly (within roughly the first two third of each path). Safety distances

24

D. HYPERPARMETERS OF THE RL ALGORITHMS

are ensured, so that the inital states are not in collision, however speeds
may be such that there will a collision after the first time step, so there is
no guarantee of feasibility.

D Hyperparmeters of the RL algorithms

For TD3:

– Actor network architecture: multi-layer perceptron (MLP) [1] with 3 hidden
layers of size 256 and rectified linear unit (ReLU) activation functions.

– Actor optimizer: ADAM [25], actor learning rate: 10−3

– Critic network architecture: MLP with 3 hidden layers of size 256 and ReLU
activation functions.

– Critic optimizer: ADAM, critic learning rate: 10−3

– Discount factor: 0.99

– Soft update coefficient (τ): 0.05

For TD3BC:

– Actor network architecture: MLP with 3 hidden layers of size 256 and ReLU
activation functions.

– Actor optimizer: ADAM , actor learning rate: 10−3

– Critic network architecture: MLP with 3 hidden layers of size 256 and ReLU
activation functions.

– Critic optimizer: ADAM, critic learning rate: 10−3

– Discount factor: 0.99

– Soft update coefficient (τ): 0.05

– α: 2.5

25

	Layered controller synthesis for dynamic multi-agent systems

