Skip to main content

3D Hybrid Cellular Automata for Cardiac Electrophysiology: A Concept Study

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14137))

Included in the following conference series:

  • 229 Accesses

Abstract

A heartbeat is the emerging collective behavior of billions of cells. However, if this synchronization fails, lethal arrhythmias can appear. Mathematical and computational models offer an ethical alternative to in-vivo analyses of cardiac electrophysiological properties. However, the inherent multiscale complexity of the underlying nonlinear dynamics still limits model applicability and predictability. In previous contributions, we implemented a unidirectional Hybrid Cellular Automata (HCA) model reproducing cardiac cell cables and introducing the concept of a statistically distributed cell-cell resistance. Here, we generalize the theoretical framework by considering a bidirectional coupling and simulate physiological and pathological conditions in three-dimensional domains. The work compares two HCA approaches reproducing critical spatiotemporal phenomena and contrasts them with well-established model formulations. We discuss the limits and applicability of discrete vs. continuum approaches in view of improved numerical performances.

This work has been supported by the Doctoral College Resilient Embedded Systems, which is run jointly by the TU Wien’s Faculty of Informatics and the UAS Technikum Wien.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andalam, S., Ramanna, H., Malik, A., Roop, P., Patel, N., Trew, M.L.: Hybrid automata models of cardiac ventricular electrophysiology for real-time computational applications. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5595–5598. IEEE (2016). https://doi.org/10.1109/embc.2016.7591995

  2. Beeler, G.W., Reuter, H.: Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. 268(1), 177–210 (1977)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Breukelaar, R., Bäck, T.: Using a genetic algorithm to evolve behavior in multi dimensional cellular automata: emergence of behavior. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 107–114 (2005)

    Google Scholar 

  4. Bub, G., Shrier, A., Glass, L.: Bursting in cellular automata and cardiac arrhythmias. In: Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua With DVD-ROM, composed by Eleonora Bilotta, pp. 135–145. World Scientific (2013)

    Google Scholar 

  5. Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253(3), 544–560 (2008). https://doi.org/10.1016/j.jtbi.2008.03.029

    Article  PubMed  Google Scholar 

  6. Cherry, E.M., Fenton, F.H.: Effects of boundaries and geometry on the spatial distribution of action potential duration in cardiac tissue. J. Theor. Biol. 285(1), 164–176 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clayton, R., et al.: Models of cardiac tissue electrophysiology: progress, challenges and open questions. Progress Biophys. Molecular Biol. 104(1), 22–48 (2011). https://doi.org/10.1016/j.pbiomolbio.2010.05.008, https://www.sciencedirect.com/science/article/pii/S0079610710000362, cardiac Physiome project: Mathematical and Modelling Foundations

  8. Dierckx, H., Fenton, F.H., Filippi, S., Pumir, A., Sridhar, S.: Simulating normal and arrhythmic dynamics: from sub-cellular to tissue and organ level. Front. Phys. 7, 89 (2019). https://doi.org/10.3389/978-2-88963-067-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. for Disease Control, C., Prevention: CDC atrial fibrilation (2022). https://www.cdc.gov/heartdisease/atrial_fibrillation.htm

  10. Fenton, F., Karma, A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos: Interdisc. J. Nonlinear Sci. 8(1), 20–47 (1998)

    Article  Google Scholar 

  11. Fenton, F.H., Gizzi, A., Cherubini, C., Pomella, N., Filippi, S.: Role of temperature on nonlinear cardiac dynamics. Phys. Rev. E 87(4), 042717 (2013). https://doi.org/10.1103/physreve.87.042717

    Article  Google Scholar 

  12. Georgis, G., Lentaris, G., Reisis, D.: Acceleration techniques and evaluation on multi-core CPU, GPU and FPGA for image processing and super-resolution. J. Real-Time Image Process. 16(4), 1207–1234 (2019). https://doi.org/10.1007/s11554-016-0619-6

    Article  Google Scholar 

  13. Gizzi, A., et al.: Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential. Chaos: Interdisc. J. Nonlinear Sci. 27(9), 093919 (2017). https://doi.org/10.1063/1.4999610

    Article  CAS  Google Scholar 

  14. Gizzi, A., Cherry, E.M., Gilmour, R.F., Jr., Luther, S., Filippi, S., Fenton, F.H.: Effects of pacing site and stimulation history on alternans dynamics and the development of complex spatiotemporal patterns in cardiac tissue. Front. Physiol. 4, 71 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Göktepe, S., Kuhl, E.: Computational modeling of cardiac electrophysiology: a novel finite element approach. Int. J. Numer. Methods Eng. 79(2), 156–178 (2009)

    Article  Google Scholar 

  16. Goldhaber, J.I., Xie, L.H., Duong, T., Motter, C., Khuu, K., Weiss, J.N.: Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling. Circ. Res. 96(4), 459–466 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_31

    Chapter  Google Scholar 

  18. Heidenreich, E.A., Ferrero, J.M., Doblaré, M., Rodríguez, J.F.: Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology. Ann. Biomed. Eng. 38, 2331–2345 (2010)

    Article  PubMed  Google Scholar 

  19. Henzinger, T.: The theory of hybrid automata. In: Proceedings 11th Annual IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996). https://doi.org/10.1109/LICS.1996.561342

  20. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hund, T.J., Rudy, Y.: Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110(20), 3168–3174 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaboudian, A., Velasco-Perez, H.A., Iravanian, S., Shiferaw, Y., Cherry, E.M., Fenton, F.H.: A comprehensive comparison of GPU implementations of cardiac electrophysiology models. In: Bartocci, E., Cleaveland, R., Grosu, R., Sokolsky, O. (eds.) From Reactive Systems to Cyber-Physical Systems. LNCS, vol. 11500, pp. 9–34. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31514-6_2

    Chapter  Google Scholar 

  23. Koller, M.L., Riccio, M.L., Jr., R.F.G.: Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am. J. Physiol.-Heart Circ. Physiol. 275(5), H1635–H1642 (1998)

    Google Scholar 

  24. Lehotzky, D., Zupanc, G.K.: Cellular automata modeling of stem-cell-driven development of tissue in the nervous system. Dev. Neurobiol. 79(5), 497–517 (2019). https://doi.org/10.1002/dneu.22686

    Article  PubMed  Google Scholar 

  25. Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents and concentration changes. Circ. Res. 74(6), 1071–1096 (1994)

    Google Scholar 

  26. Marcotte, C.D., Grigoriev, R.O.: Implementation of PDE models of cardiac dynamics on GPUs using OpenCL. arXiv preprint arXiv:1309.1720 (2013)

  27. McSharry, P.E., Clifford, G.D., Tarassenko, L., Smith, L.A.: A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50(3), 289–294 (2003)

    Article  PubMed  Google Scholar 

  28. Murray, J.D. (ed.): Mathematical Biology. IAM, vol. 18. Springer, New York (2003). https://doi.org/10.1007/b98869

    Book  Google Scholar 

  29. Neumann, J., Burks, A.W., et al.: Theory of self-reproducing automata, vol. 1102024. University of Illinois Press Urbana (1966). https://doi.org/10.2307/2005041

  30. Noble, D.: A modification of the hodgkin-huxley equations applicable to purkinje fibre action and pacemaker potentials. J. Physiol. 160(2), 317 (1962)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Noble, D.: From the hodgkin-huxley axon to the virtual heart. J. Physiol. 580(1), 15–22 (2007). https://doi.org/10.1113/jphysiol.2006.119370

    Article  CAS  PubMed  Google Scholar 

  32. Panfilov, A.V., Keldermann, R.H., Nash, M.P.: Drift and breakup of spiral waves in reaction-diffusion-mechanics systems. Proc. National Acad. Sci. 104(19), 7922–7926 (2007). https://doi.org/10.1073/pnas.0701895104, https://www.pnas.org/doi/abs/10.1073/pnas.0701895104

  33. Peyrat, J.-M., et al.: Statistical comparison of cardiac fibre architectures. In: Sachse, F.B., Seemann, G. (eds.) FIMH 2007. LNCS, vol. 4466, pp. 413–423. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72907-5_42

    Chapter  Google Scholar 

  34. Piuze, E., Lombaert, H., Sporring, J., Strijkers, G.J., Bakermans, A.J., Siddiqi, K.: Atlases of cardiac fiber differential geometry. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) Functional Imaging and Modeling of the Heart, pp. 442–449. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38899-6_52

    Chapter  Google Scholar 

  35. Regazzoni, F., Dedè, L., Quarteroni, A.: Biophysically detailed mathematical models of multiscale cardiac active mechanics. PLoS Comput. Biol. 16(10), e1008294 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruiz Baier, R., Gizzi, A., Loppini, A., Cherubini, C., Filippi, S.: Modelling thermo-electro-mechanical effects in orthotropic cardiac tissue. Commun. Comput. Phys. 27(1) (2019). https://doi.org/10.4208/cicp.OA-2018-0253

  37. Treml, L.M., Bartocci, E., Gizzi, A.: Modeling and analysis of cardiac hybrid cellular automata via GPU-accelerated monte Carlo simulation. Mathematics 9(2), 164 (2021)

    Article  Google Scholar 

  38. Vasconcellos, E.C., Clua, E.W., Fenton, F.H., Zamith, M.: Accelerating simulations of cardiac electrical dynamics through a multi-GPU platform and an optimized data structure. Concurrency Comput.: Pract. Exper. 32(5), e5528 (2020). https://doi.org/10.1002/cpe.5528

    Article  Google Scholar 

  39. Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419–424 (1984). https://doi.org/10.1038/311419a0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilly Maria Treml .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Treml, L.M. (2023). 3D Hybrid Cellular Automata for Cardiac Electrophysiology: A Concept Study. In: Pang, J., Niehren, J. (eds) Computational Methods in Systems Biology. CMSB 2023. Lecture Notes in Computer Science(), vol 14137. Springer, Cham. https://doi.org/10.1007/978-3-031-42697-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42697-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42696-4

  • Online ISBN: 978-3-031-42697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics