Abstract
Partially specified Boolean networks (PSBNs) represent a promising framework for the qualitative modelling of biological systems in which the logic of interactions is not completely known. Phenotype control aims to stabilise the network in states exhibiting specific traits.
In this paper, we define the phenotype control problem in the context of asynchronous PSBNs and propose a novel semi-symbolic algorithm for solving this problem with permanent variable perturbations.
This work was supported by the Czech Foundation grant No. GA22-10845S, Grant Agency of Masaryk University grant No. MUNI/G/1771/2020, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abou-Jaoudé, W., et al.: Logical modeling and dynamical analysis of cellular networks. Front. Genet. 7, 94 (2016)
Albert, R.: Boolean modeling of genetic regulatory networks. In: Complex Networks, pp. 459–481. Springer (2004)
Aracena, J., Goles, E., Moreira, A., Salinas, L.: On the robustness of update schedules in Boolean networks. Biosystems 97(1), 1–8 (2009)
Barbuti, R., Gori, R., Milazzo, P., Nasti, L.: A survey of gene regulatory networks modelling methods: from differential equations, to Boolean and qualitative bioinspired models. J. Membr. Comput. 2(3), 207–226 (2020)
Baudin, A., Paul, S., Su, C., Pang, J.: Controlling large Boolean networks with single-step perturbations. Bioinformatics 35(14), i558–i567 (2019)
Beneš, N., et al.: Aeon. py: Python library for attractor analysis in asynchronous boolean networks. Bioinformatics 38(21), 4978–4980 (2022)
Beneš, N., Brim, L., Kadlecaj, J., Pastva, S., Šafránek, D.: AEON: Attractor Bifurcation Analysis of Parametrised Boolean Networks. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 569–581. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_28
Beneš, N., Brim, L., Pastva, S., Šafránek, D.: BDD-based algorithm for scc decomposition of edge-coloured graphs. Logical Methods Comput. Sci. 18 (2022)
Beneš, N., Brim, L., Huvar, O., Pastva, S., Šafránek, D.: Boolean network sketches: a unifying framework for logical model inference. Bioinformatics 39, btad158 (2023)
Borriello, E., Daniels, B.C.: The basis of easy controllability in Boolean networks. Nature Commun. 12(1), 1–15 (2021)
Brim, L., Pastva, S., Šafránek, D., Šmijáková, E.: Temporary and permanent control of partially specified boolean networks. Biosystems 223, 104795 (2023)
Brim, L., Pastva, S., Šafránek, D., Šmijáková, E.: Parallel one-step control of parametrised Boolean networks. Mathematics 9(5), 560 (2021)
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)
Calzone, L., et al.: Mathematical modelling of cell-fate decision in response to death receptor engagement. PLOS Comput. Bio. 6(3), 1–15 (2010)
Choo, S.M., Ban, B., Joo, J.I., Cho, K.H.: The phenotype control kernel of a biomolecular regulatory network. BMC Syst. Biol. 12(1), 1–15 (2018)
Choo, S.M., Cho, K.H.: An efficient algorithm for identifying primary phenotype attractors of a large-scale Boolean network. BMC Syst. Bio. 10(1), 1–14 (2016)
Cifuentes Fontanals, L., Tonello, E., Siebert, H.: Control strategy identification via trap spaces in Boolean networks. In: Computational Methods in Systems Biology. Lecture Notes in Computer Science, vol. 12314, pp. 159–175. Springer (2020)
Cifuentes Fontanals, L., Tonello, E., Siebert, H.: Control in Boolean networks with model checking. Front. Appl. Math. Stat. 8, 838546 (04 2022)
Cohen, D.P., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.: Mathematical modelling of molecular pathways enabling tumour cell invasion and migration. PLOS Comput. Bio. 11(11), 1–29 (2015)
Fiedler, B., Mochizuki, A., Kurosawa, G., Saito, D.: Dynamics and control at feedback vertex sets. I: Informative and determining nodes in regulatory networks. J. Dyn. Diff. Equat. 25(3), 563–604 (2013)
Geris, L., Gomez-Cabrero, D.: An Introduction to Uncertainty in the Development of Computational Models of Biological Processes. In: Geris, L., Gomez-Cabrero, D. (eds.) Uncertainty in Biology. SMTEB, vol. 17, pp. 3–11. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21296-8_1
Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., Thieffry, D.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLOS Comput. Bio. 9(10), e1003286 (2013)
Herrmann, F., Groß, A., Zhou, D., Kestler, H.A., Kühl, M.: A boolean model of the cardiac gene regulatory network determining first and second heart field identity. PloS one 7(10), e46798 (2012)
Ito, N., Kuwahara, G., Sukehiro, Y., Teratani, H.: Segmental arterial mediolysis accompanied by renal infarction and pancreatic enlargement: a case report. J. Med. Case Rep. 6(1), 1–5 (2012)
Kim, J., Park, S.M., Cho, K.H.: Discovery of a kernel for controlling biomolecular regulatory networks. Sci. Rep. 3(1), 1–9 (2013)
Klarner, H., Heinitz, F., Nee, S., Siebert, H.: Basins of attraction, commitment sets, and phenotypes of Boolean networks. IEEE/ACM Trans. Comput. Bio. Bioinf. 17(4), 1115–1124 (2018)
Kobayashi, K., Hiraishi, K.: Optimal control of asynchronous Boolean networks modeled by Petri nets. In: Biological Process & Petri Nets. pp. 7–20. CEUR-WS (2011)
Mandon, H., Haar, S., Paulevé, L.: Temporal Reprogramming of Boolean Networks. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 179–195. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_11
Mandon, H., Su, C., Haar, S., Pang, J., Paulevé, L.: Sequential Reprogramming of Boolean Networks Made Practical. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 3–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3_1
Martin, A.J., Dominguez, C., Contreras-Riquelme, S., Holmes, D.S., Perez-Acle, T.: Graphlet based metrics for the comparison of gene regulatory networks. PLOS ONE 11(10), e0163497e (2016)
Pardo, J., Ivanov, S., Delaplace, F.: Sequential Reprogramming of Biological Network Fate. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 20–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3_2
Paulevé, L.: Marker and source-marker reprogramming of most permissive Boolean networks and ensembles with BoNesis. Peer Commun. J. (2023)
Rozum, J.C., Deritei, D., Park, K.H., Gómez Tejeda Zañudo, J., Albert, R.: pystablemotifs: python library for attractor identification and control in Boolean networks. Bioinformatics 38(5), 1465–1466 (2022)
Rozum, J.C., Gómez Tejeda Zañudo, J., Gan, X., Deritei, D., Albert, R.: Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks. Sci. Adv. 7(29), eabf8124 (2021)
Sahin, Ö., et al.: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst. Bio. 3(1), 1–20 (2009)
Su, C., Pang, J.: A dynamics-based approach for the target control of Boolean networks. In: ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. pp. 1–8. Association for Computing Machinery (2020)
Su, C., Pang, J.: Sequential Temporary and Permanent Control of Boolean Networks. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 234–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_13
Su, C., Paul, S., Pang, J.: Controlling Large Boolean Networks with Temporary and Permanent Perturbations. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 707–724. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_41
Su, C., Paul, S., Pang, J.: Scalable control of asynchronous Boolean networks. In: Computational Methods in Systems Biology. Lecture Notes in Computer Science, vol. 11773, pp. 364–367. Springer (2019)
Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular network dynamics. PLOS Comput. Bio. 11(4), 1–24 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Beneš, N., Brim, L., Pastva, S., Šafránek, D., Šmijáková, E. (2023). Phenotype Control of Partially Specified Boolean Networks. In: Pang, J., Niehren, J. (eds) Computational Methods in Systems Biology. CMSB 2023. Lecture Notes in Computer Science(), vol 14137. Springer, Cham. https://doi.org/10.1007/978-3-031-42697-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-42697-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42696-4
Online ISBN: 978-3-031-42697-1
eBook Packages: Computer ScienceComputer Science (R0)