Skip to main content

Phenotype Control of Partially Specified Boolean Networks

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2023)

Abstract

Partially specified Boolean networks (PSBNs) represent a promising framework for the qualitative modelling of biological systems in which the logic of interactions is not completely known. Phenotype control aims to stabilise the network in states exhibiting specific traits.

In this paper, we define the phenotype control problem in the context of asynchronous PSBNs and propose a novel semi-symbolic algorithm for solving this problem with permanent variable perturbations.

This work was supported by the Czech Foundation grant No. GA22-10845S, Grant Agency of Masaryk University grant No. MUNI/G/1771/2020, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/sybila/biodivine-pbn-control/.

References

  1. Abou-Jaoudé, W., et al.: Logical modeling and dynamical analysis of cellular networks. Front. Genet. 7, 94 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Albert, R.: Boolean modeling of genetic regulatory networks. In: Complex Networks, pp. 459–481. Springer (2004)

    Google Scholar 

  3. Aracena, J., Goles, E., Moreira, A., Salinas, L.: On the robustness of update schedules in Boolean networks. Biosystems 97(1), 1–8 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. Barbuti, R., Gori, R., Milazzo, P., Nasti, L.: A survey of gene regulatory networks modelling methods: from differential equations, to Boolean and qualitative bioinspired models. J. Membr. Comput. 2(3), 207–226 (2020)

    Article  Google Scholar 

  5. Baudin, A., Paul, S., Su, C., Pang, J.: Controlling large Boolean networks with single-step perturbations. Bioinformatics 35(14), i558–i567 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beneš, N., et al.: Aeon. py: Python library for attractor analysis in asynchronous boolean networks. Bioinformatics 38(21), 4978–4980 (2022)

    Google Scholar 

  7. Beneš, N., Brim, L., Kadlecaj, J., Pastva, S., Šafránek, D.: AEON: Attractor Bifurcation Analysis of Parametrised Boolean Networks. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 569–581. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_28

    Chapter  Google Scholar 

  8. Beneš, N., Brim, L., Pastva, S., Šafránek, D.: BDD-based algorithm for scc decomposition of edge-coloured graphs. Logical Methods Comput. Sci. 18 (2022)

    Google Scholar 

  9. Beneš, N., Brim, L., Huvar, O., Pastva, S., Šafránek, D.: Boolean network sketches: a unifying framework for logical model inference. Bioinformatics 39, btad158 (2023)

    Google Scholar 

  10. Borriello, E., Daniels, B.C.: The basis of easy controllability in Boolean networks. Nature Commun. 12(1), 1–15 (2021)

    Article  Google Scholar 

  11. Brim, L., Pastva, S., Šafránek, D., Šmijáková, E.: Temporary and permanent control of partially specified boolean networks. Biosystems 223, 104795 (2023)

    Article  PubMed  Google Scholar 

  12. Brim, L., Pastva, S., Šafránek, D., Šmijáková, E.: Parallel one-step control of parametrised Boolean networks. Mathematics 9(5), 560 (2021)

    Article  Google Scholar 

  13. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

    Article  Google Scholar 

  14. Calzone, L., et al.: Mathematical modelling of cell-fate decision in response to death receptor engagement. PLOS Comput. Bio. 6(3), 1–15 (2010)

    Google Scholar 

  15. Choo, S.M., Ban, B., Joo, J.I., Cho, K.H.: The phenotype control kernel of a biomolecular regulatory network. BMC Syst. Biol. 12(1), 1–15 (2018)

    Article  Google Scholar 

  16. Choo, S.M., Cho, K.H.: An efficient algorithm for identifying primary phenotype attractors of a large-scale Boolean network. BMC Syst. Bio. 10(1), 1–14 (2016)

    Google Scholar 

  17. Cifuentes Fontanals, L., Tonello, E., Siebert, H.: Control strategy identification via trap spaces in Boolean networks. In: Computational Methods in Systems Biology. Lecture Notes in Computer Science, vol. 12314, pp. 159–175. Springer (2020)

    Google Scholar 

  18. Cifuentes Fontanals, L., Tonello, E., Siebert, H.: Control in Boolean networks with model checking. Front. Appl. Math. Stat. 8, 838546 (04 2022)

    Google Scholar 

  19. Cohen, D.P., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.: Mathematical modelling of molecular pathways enabling tumour cell invasion and migration. PLOS Comput. Bio. 11(11), 1–29 (2015)

    Google Scholar 

  20. Fiedler, B., Mochizuki, A., Kurosawa, G., Saito, D.: Dynamics and control at feedback vertex sets. I: Informative and determining nodes in regulatory networks. J. Dyn. Diff. Equat. 25(3), 563–604 (2013)

    Google Scholar 

  21. Geris, L., Gomez-Cabrero, D.: An Introduction to Uncertainty in the Development of Computational Models of Biological Processes. In: Geris, L., Gomez-Cabrero, D. (eds.) Uncertainty in Biology. SMTEB, vol. 17, pp. 3–11. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21296-8_1

    Chapter  Google Scholar 

  22. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., Thieffry, D.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLOS Comput. Bio. 9(10), e1003286 (2013)

    Article  Google Scholar 

  23. Herrmann, F., Groß, A., Zhou, D., Kestler, H.A., Kühl, M.: A boolean model of the cardiac gene regulatory network determining first and second heart field identity. PloS one 7(10), e46798 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ito, N., Kuwahara, G., Sukehiro, Y., Teratani, H.: Segmental arterial mediolysis accompanied by renal infarction and pancreatic enlargement: a case report. J. Med. Case Rep. 6(1), 1–5 (2012)

    Article  Google Scholar 

  25. Kim, J., Park, S.M., Cho, K.H.: Discovery of a kernel for controlling biomolecular regulatory networks. Sci. Rep. 3(1), 1–9 (2013)

    Google Scholar 

  26. Klarner, H., Heinitz, F., Nee, S., Siebert, H.: Basins of attraction, commitment sets, and phenotypes of Boolean networks. IEEE/ACM Trans. Comput. Bio. Bioinf. 17(4), 1115–1124 (2018)

    Google Scholar 

  27. Kobayashi, K., Hiraishi, K.: Optimal control of asynchronous Boolean networks modeled by Petri nets. In: Biological Process & Petri Nets. pp. 7–20. CEUR-WS (2011)

    Google Scholar 

  28. Mandon, H., Haar, S., Paulevé, L.: Temporal Reprogramming of Boolean Networks. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 179–195. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_11

    Chapter  Google Scholar 

  29. Mandon, H., Su, C., Haar, S., Pang, J., Paulevé, L.: Sequential Reprogramming of Boolean Networks Made Practical. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 3–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3_1

    Chapter  Google Scholar 

  30. Martin, A.J., Dominguez, C., Contreras-Riquelme, S., Holmes, D.S., Perez-Acle, T.: Graphlet based metrics for the comparison of gene regulatory networks. PLOS ONE 11(10), e0163497e (2016)

    Google Scholar 

  31. Pardo, J., Ivanov, S., Delaplace, F.: Sequential Reprogramming of Biological Network Fate. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 20–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3_2

    Chapter  Google Scholar 

  32. Paulevé, L.: Marker and source-marker reprogramming of most permissive Boolean networks and ensembles with BoNesis. Peer Commun. J. (2023)

    Google Scholar 

  33. Rozum, J.C., Deritei, D., Park, K.H., Gómez Tejeda Zañudo, J., Albert, R.: pystablemotifs: python library for attractor identification and control in Boolean networks. Bioinformatics 38(5), 1465–1466 (2022)

    Google Scholar 

  34. Rozum, J.C., Gómez Tejeda Zañudo, J., Gan, X., Deritei, D., Albert, R.: Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks. Sci. Adv. 7(29), eabf8124 (2021)

    Google Scholar 

  35. Sahin, Ö., et al.: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst. Bio. 3(1), 1–20 (2009)

    Article  Google Scholar 

  36. Su, C., Pang, J.: A dynamics-based approach for the target control of Boolean networks. In: ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. pp. 1–8. Association for Computing Machinery (2020)

    Google Scholar 

  37. Su, C., Pang, J.: Sequential Temporary and Permanent Control of Boolean Networks. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 234–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_13

    Chapter  Google Scholar 

  38. Su, C., Paul, S., Pang, J.: Controlling Large Boolean Networks with Temporary and Permanent Perturbations. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 707–724. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_41

    Chapter  Google Scholar 

  39. Su, C., Paul, S., Pang, J.: Scalable control of asynchronous Boolean networks. In: Computational Methods in Systems Biology. Lecture Notes in Computer Science, vol. 11773, pp. 364–367. Springer (2019)

    Google Scholar 

  40. Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular network dynamics. PLOS Comput. Bio. 11(4), 1–24 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Šmijáková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beneš, N., Brim, L., Pastva, S., Šafránek, D., Šmijáková, E. (2023). Phenotype Control of Partially Specified Boolean Networks. In: Pang, J., Niehren, J. (eds) Computational Methods in Systems Biology. CMSB 2023. Lecture Notes in Computer Science(), vol 14137. Springer, Cham. https://doi.org/10.1007/978-3-031-42697-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42697-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42696-4

  • Online ISBN: 978-3-031-42697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics