Skip to main content

Intuitive Modelling and Formal Analysis of Collective Behaviour in Foraging Ants

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14137))

Included in the following conference series:

Abstract

We demonstrate a novel methodology that integrates intuitive modelling, simulation, and formal verification of collective behaviour in biological systems. To that end, we consider the case of a colony of foraging ants, where, for the combined effect of known biological mechanisms such as stigmergic interaction, pheromone release, and path integration, the ants will progressively work out the shortest path to move back and forth between their nest and a hypothetical food repository. Starting from an informal description in natural language, we show how to devise intuitive specifications for such scenario in a formal language. We then make use of a prototype software tool to formally assess whether such specifications would indeed replicate the expected collective behaviour of the colony as a whole.

Work partially funded by MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy Smart Systems), ERC consolidator grant no. 772459 D-SynMA (Distributed Synthesis: from Single to Multiple Agents), and PRO3 MUR project Software Quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SLiVER is available at https://github.com/labs-lang/sliver.

  2. 2.

    Notice that this is not the same as solving the formula under assumptions: if the instrumentation makes the formula unsatisfiable, we leave the solver free to drop part of it and resume its search.

  3. 3.

    Adding the attribute onFood is not strictly necessary, but makes for more readable specifications.

References

  1. Attanasi, A., et al.: Information transfer and behavioural inertia in starling flocks. Nat. Phys. 10 (2014). https://doi.org/10.1038/nphys3035

  2. Bartocci, E., Lió, P.: Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol. 12(1), e1004591 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bergstra, J.A., Klop, J.W., Tucker, J.V.: Algebraic tools for system construction. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 34–44. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-12896-4_353

    Chapter  Google Scholar 

  4. Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: Transition power abstractions for deep counterexample detection. In: TACAS 2022. LNCS, vol. 13243, pp. 524–542. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_29

    Chapter  Google Scholar 

  5. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. PNAS 99 (2002). https://doi.org/10.1073/pnas.082080899

  6. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

    Chapter  Google Scholar 

  7. Brezis, H., Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, vol. 2. Springer, New York (2011). https://doi.org/10.1007/978-0-387-70914-7

    Book  Google Scholar 

  8. Chiacchio, F., Pennisi, M., Russo, G., Motta, S., Pappalardo, F.: Agent-based modeling of the immune system: NetLogo, a promising framework. BioMed Res. Int. (2014). https://doi.org/10.1155/2014/907171

  9. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. Electr. Notes Theor. Comput. Sci. 194 (2008). https://doi.org/10.1016/j.entcs.2007.12.008

  10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15

    Chapter  Google Scholar 

  11. Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and complexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_9

    Chapter  Google Scholar 

  12. Cristiani, E., Menci, M., Papi, M., Brafman, L.: An all-leader agent-based model for turning and flocking birds. J. Math. Biol. 83 (2021). https://doi.org/10.1007/s00285-021-01675-2

  13. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stigmergy. Sci. Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.102345

  14. De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S.: Modelling flocks of birds from the bottom up. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13703, pp. 82–96. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19759-8_6

    Chapter  Google Scholar 

  15. De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S.: Modelling flocks of birds and colonies of ants from the bottom up. Int. J. Softw. Tools Technol. Transf. (2023, to appear)

    Google Scholar 

  16. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M., Duerinck, G.: Random behaviour, amplification processes and number of participants: how they contribute to the foraging properties of ants. Physica D 22(1), 176–186 (1986). https://doi.org/10.1016/0167-2789(86)90239-3

    Article  Google Scholar 

  17. Di Stefano, L., De Nicola, R., Inverso, O.: Verification of distributed systems via sequential emulation. ACM Trans. Softw. Eng. Methodol. 31 (2022). https://doi.org/10.1145/3490387

  18. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39 (2006)

    Article  Google Scholar 

  19. Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature 460 (2009). https://doi.org/10.1038/460685a

  20. Feurzeig, W., Papert, S.: Programming-languages as a conceptual framework for teaching mathematics. In: NATO Conference on Computers and Learning, pp. 37–42 (1968)

    Google Scholar 

  21. Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M.: SAT competition 2020. Artif. Intell. 301, 103572 (2021). https://doi.org/10.1016/j.artint.2021.103572

    Article  Google Scholar 

  22. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76(12), 579–581 (1989). https://doi.org/10.1007/BF00462870

    Article  Google Scholar 

  23. Grauwin, S., Bertin, E., Lemoy, R., Jensen, P.: Competition between collective and individual dynamics. PNAS 106 (2009). https://doi.org/10.1073/pnas.0906263106

  24. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, London (1985)

    Google Scholar 

  25. Hogeweg, P.: Mirror beyond mirror: puddles of life. In: ALIFE. Santa Fe Institute Studies in the Sciences of Complexity, vol. 6, pp. 297–316. Addison-Wesley (1987)

    Google Scholar 

  26. Inchiosa, M.E., Parker, M.T.: Overcoming design and development challenges in agent-based modeling using ASCAPE. PNAS 99 (2002). https://doi.org/10.1073/pnas.082081199

  27. Kaul, H., Ventikos, Y.: Investigating biocomplexity through the agent-based paradigm. Br. Bioinf. 16 (2015). https://doi.org/10.1093/bib/bbt077

  28. Kolay, S., Boulay, R., d’Ettorre, P.: Regulation of ant foraging: a review of the role of information use and personality. Front. Psychol. 11, 734 (2020). https://doi.org/10.3389/fpsyg.2020.00734

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18 (2015). https://doi.org/10.18564/jasss.2661

  30. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  31. Langton, C.G.: Studying artificial life with cellular automata. Physica D 22(1), 120–149 (1986). https://doi.org/10.1016/0167-2789(86)90237-X

    Article  Google Scholar 

  32. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr. Program. 78 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

  33. Levin, S.: Complex adaptive systems: exploring the known, the unknown and the unknowable. Bull. Amer. Math. Soc. 40 (2003). https://doi.org/10.1090/S0273-0979-02-00965-5

  34. Li, L., Peng, H., Kurths, J., Yang, Y., Schellnhuber, H.J.: Chaos–order transition in foraging behavior of ants. PNAS 111 (2014). https://doi.org/10.1073/pnas.1407083111

  35. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.C.: MASON: a multiagent simulation environment. Simulation 81 (2005). https://doi.org/10.1177/0037549705058073

  36. Massink, M., Latella, D.: Fluid analysis of foraging ants. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 152–165. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30829-1_11

    Chapter  Google Scholar 

  37. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

    Book  Google Scholar 

  38. Müller, M., Wehner, R.: Path integration in desert ants, cataglyphis fortis. PNAS 85(14), 5287–5290 (1988). https://doi.org/10.1073/pnas.85.14.5287

    Article  PubMed  PubMed Central  Google Scholar 

  39. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Automat. Contr. 51 (2006). https://doi.org/10.1109/TAC.2005.864190

  40. Pagliara, R., Gordon, D.M., Leonard, N.E.: Regulation of harvester ant foraging as a closed-loop excitable system. PLoS Comput. Biol. 14(12) (2018). https://doi.org/10.1371/journal.pcbi.1006200

  41. Panait, L.A., Luke, S.: Ant foraging revisited. In: ALIFE, pp. 569–574. MIT Press (2004). https://doi.org/10.7551/mitpress/1429.003.0096

  42. Parunak, H.V.D.: Social simulation for non-hackers. In: Van Dam, K.H., Verstaevel, N. (eds.) MABS 2021. LNCS (LNAI), vol. 13128, pp. 1–14. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94548-0_1

    Chapter  Google Scholar 

  43. Perna, A., et al.: Individual rules for trail pattern formation in argentine ants (Linepithema Humile). PLoS Comput. Biol. 8 (2012). https://doi.org/10.1371/journal.pcbi.1002592

  44. Resnick, M.: Turtles, Termites, and Traffic Jams - Explorations in Massively Parallel Microworlds. MIT Press (1998)

    Google Scholar 

  45. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_16

    Chapter  Google Scholar 

  46. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40922-X_8

    Chapter  Google Scholar 

  47. Sumpter, D.J., Blanchard, G.B., Broomhead, D.S.: Ants and agents: a process algebra approach to modelling ant colony behaviour. Bull. Math. Biol. 63 (2001). https://doi.org/10.1006/bulm.2001.0252

  48. Theraulaz, G., et al.: Spatial patterns in ant colonies. PNAS 99 (2002). https://doi.org/10.1073/pnas.152302199

  49. Tofts, C.: A synchronous calculus of relative frequency. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 467–480. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039078

    Chapter  Google Scholar 

  50. Tofts, C.M.N.: Describing social insect behaviour using process algebra. Trans. Soc. Comput. Simul. 9, 227 (1992)

    Google Scholar 

  51. Tofts, C.M.N.: Process algebra as modelling. Electr. Notes Theor. Comput. Sci. 162 (2006). https://doi.org/10.1016/j.entcs.2005.12.114

  52. Traniello, J.F.A.: Foraging strategies of ants. Annu. Rev. Entomol. 34(1), 191–210 (1989). https://doi.org/10.1146/annurev.en.34.010189.001203

    Article  Google Scholar 

  53. Vittori, K., Talbot, G., Gautrais, J., Fourcassié, V., Araújo, A.F.R., Theraulaz, G.: Path efficiency of ant foraging trails in an artificial network. J. theor. Biol. 239 (2006). https://doi.org/10.1016/j.jtbi.2005.08.017

  54. Wilensky, U.: Modeling nature’s emergent patterns with multi-agent languages. In: EuroLogo (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serenella Valiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S. (2023). Intuitive Modelling and Formal Analysis of Collective Behaviour in Foraging Ants. In: Pang, J., Niehren, J. (eds) Computational Methods in Systems Biology. CMSB 2023. Lecture Notes in Computer Science(), vol 14137. Springer, Cham. https://doi.org/10.1007/978-3-031-42697-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42697-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42696-4

  • Online ISBN: 978-3-031-42697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics