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Abstract. This paper outlines our ideas on how to teach linear algebra
in a mechanized mathematical environment, and discusses some of our
reasons for thinking that this is a better way to teach linear algebra
than the “old fashioned way”. We discuss some technological tools such
as Maple, Matlab, Python, and Jupyter Notebooks, and some choices
of topics that are especially suited to teaching with these tools. The
discussion is informed by our experience over the past thirty or more
years teaching at various levels, especially at the University of Western
Ontario.
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1 Overview

“Linear algebra is the first course where the student encounters algebra,
analysis, and geometry all together at once.”

—William (Velvel) Kahan,
to RMC at the 4th SIAM Linear Algebra Conference in Minneapolis 1991

This paper describes the current state of our ongoing practice of teaching linear
algebra in mechanized environments. We report our thoughts, arrived at after
several decades of history in differing technological and administrative support
structures. Some of our teaching philosophy is laid out in [2] and the references
therein (especially for active teaching), but to keep this paper self-contained we
will give a precis of our approach in section 1.1.
We believe that this paper will be of interest for this conference both for its use
of various computational environments (Jupyter notebooks, Maple, Matlab, and
historically the HP48 series of calculators) and for its recommendations of what
is needed for future environments for mechanized mathematics.
Linear algebra as a mathematical subject is second only to Calculus in terms
of overall teaching effort at secondary institutions, accounting for many millions
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of dollars spent every year. There are those who believe that we should devote
even more money and effort to it, because linear algebra is foundational for so
many applications: optimization (linear programming), scientific computing, and
analysis of data, for examples.
We take as fundamental that the vast majority of people taking these enor-
mous numbers of courses are not going to choose careers as pure mathemati-
cians. Rather, they are going to become engineers, biologists, chemists, physi-
cists, economists, computer scientists, or something else3. They will likely need
probability, and methods to solve linear equations, and the understanding of
what an eigenvalue is (and perhaps what a singular value is). By and large they
will not need to reason their way out of tricky artificial problems. They will need
graph theory, and how to solve algebraic equations. They will need to learn how
to use computers to help with the drudgery of the computations involved, so
that they can be free to think about what the answers mean, instead of how
they are arrived at. They will need to learn when they can rely on computers to
help, and when they should be suspicious.
Our favourite introductory textbook—out of the myriad possible choices—arose
from an NSF-funded educational project, namely [6]. The book is [14]. Yet this
choice is not uncontroversial, and the book is not an especially good match for
a mechanized environment. We see a need for a specialized textbook to support
active learning of linear algebra in a mechanized environment.

1.1 Active learning in a mechanized environment

Within the mathematics mechanization community, it is uncontroversial to assert
that the tools available and being developed will make the learning and practice
of mathematics better. In theory, this is obvious. In practice, there are devils in
the details. For one thing, students (and researchers in industrial environments)
must be trained in the use of the new tools, and the time spent learning these
tools cannot also be spent on learning the mathematical topics. For this reason,
we advocate at least some “re-use” of tools, namely that teaching of mechanized
mathematics should use tools that will also be used for something else in the
student’s or researcher’s career.
Nowadays this largely means Jupyter notebooks and Python, which are both
very popular in data science and neuroscience. In a few years this might mean
a replacement for Jupyter together with Julia (perhaps). The one thing that we
can say about the software environment for mathematics is that it is changing
as rapidly now as it ever has been.
However, it will not be surprising to the attendees of this conference that there
are lessons to be learned from attempts to use mechanized mathematics in teach-
ing in the past. Indeed the “deep structure” of Python is not so different from

3 The diversity of where our students go afterwards makes it tricky to choose motivat-
ing applications. Network flow problems will appeal to a subset of people; electrical
circuits might appeal to another subset. Markov chains are fun for some. Very few
applications are interesting to everybody.
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that of Maple, and many aspects of programming in the one language transfer
readily to the other (for instance, dictionaries in Python are analogous to tables
in Maple). More to the point, learning to program in any language exercises
some of the same mental muscles that writing a mathematical proof does. The
analogy between recursion and mathematical induction is very close, indeed. So,
at least some of the material that has been developed with older technology can
be given some syntactic re-sugaring and used in much the same way. We will
give examples.
The most important use of technology, however, is to increase the activity level
of the student. One needs to engage the student’s attention, and get them to
do more than just passively read a text, attend a lecture, watch a video, or
regurgitate on an exam. In some ways, fashion helps with this. The students are
more likely to want to learn Python than (say) C.

1.2 How to teach with technology

There are many papers, and indeed books, written on how to teach with tech-
nology. We mention the influential paper [3], which introduced the “White Box”
/ “Black Box” model, which we have used with some success. The idea there
is that when teaching a particular technique (for instance, what a determinant
is) the student is not allowed to use the Determinant command; but after they
have understood that topic, whenever they are using determinants in a future
topic (say, Cramer’s Rule) they are allowed to use it. The psychological and
pedagogical point is that people need a certain amount of human action with a
concept before it is internalized. We tend to say that at that point, the concept
has become an answer to the student instead of a question. At that point, the
students can use the technology with assurance, and the feeling that they know
what is going on.
This rule can be used in other ways, and even backwards: use a tool as a myste-
rious Black Box for a while, probing its output by giving it various inputs until
some sense of what is going on arises. We have used this reverse strategy with
some success, as well, most commonly with the Singular Value Decomposition
(SVD). See [2] for more strategies for teaching with technology that have been
tested in practice.

1.3 What to teach, when technology is involved

A much more interesting question arises when one considers that the curriculum
must be continually curated as new tools come available. New topics may be
added (for instance, the SVD), and old topics dropped (for instance, condensa-
tion, or perhaps Gauss–Seidel iteration). Indeed a certain amount of room must
be made in the course for instruction in the responsible use of the new tools.
This is by no means easy, and the students will resist such instruction if they
are not also assessed on the use of the tools. The fact that they will be expected
to use these tools later in life as a matter of course is sometimes not enough to
encourage the students to learn them now. However, society appears to expect
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that we as instructors will be teaching the students the best way to actually
use the material we teach, and (as a matter of course) this means that we must
be teaching the students to use the tools of modern mechanized mathematics.
Those of us who are actually in the classroom know that sometimes compromises
are necessary.

1.4 Outline of the paper

In section 2, we discuss some of the tools that are available. In section 3 we
mention a few necessary topics that work well with these tools (we do not give
a full syllabus, because of space limitations). In section 4 we discuss methods of
assessment. In section 5 we discuss some reactions from colleagues and students
to these changes from a traditional syllabus, and then conclude.

2 Tools

The members of this community will have their own preferred computational
tools, which may not be the same as ours. We will not fully justify our choices
here, but instead sketch only some of the reasons for our choices.

2.1 Proprietary Tools

We do use some proprietary tools, namely Maple and Matlab. Our Universities
have site licences for these, and we have a significant body of experience with us-
ing these tools both for research and for teaching. Many engineering students will
graduate into work environments that have Matlab, and by the usual feedback
mechanism from other students and other professors, most engineering students
are well-motivated to learn Matlab. Matlab has some especially nice tools for
sparse matrices, and its live scripts are quite usable.
Maple is less well-used in industry, but in some countries it does have a presence;
nonetheless it is a harder “sell” to students, and if the course does not explicitly
give marks for knowing how to use Maple, students are sometimes reluctant to
spend time learning it. But it is powerful enough that students do appreciate it,
once they have made the effort.
There are other proprietary products which also could be used. Maple Learn is
a new one, for instance; but we do not yet have experience with it.
Other places will use Mathematica instead of Maple, but the concerns and af-
fordances are similar.

2.2 Free software

Within the free software ecosystem, Python and Jupyter stand out as tools of
choice for a lot of scientists and engineers. For linear algebra, Matlab and Maple
are both superior in terms of capability and in terms of ease of use (in our
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opinion), especially for sparse matrices, but there is no doubt whatever that
Python and Jupyter are more popular.
Python is remarkable for its support for long integer arithmetic (although its
quiet casting of types behind the scenes can cause problems, especially when
things unexpectedly contain 32 bit unsigned integers instead of the expected
long integers). Learning to program in Python is perhaps easier in the beginning
than is learning any other language (we are aware that opinions differ in this
regard, but surely the statement “the easy parts of Python are easy to learn”
would be uncontroversial).
Julia is newer, more exciting, and extremely impressive for its speed as well as
its ease of use. We anticipate that use of Julia will eclipse that of Python.

2.3 Visualization

Linear algebra might not seem to need visualization tools as much as Calculus
does, but there are several instances where we have found dynamic visualizations
to be extremely helpful. One is exemplified by the old Matlab command eigshow

(which, curiously, has been deprecated and moved into a relatively obscure lo-
cation inside the Matlab environment) which is extremely effective in giving
students “aha!” moments about both eigenvalues and singular values. One of
the keys to that tool’s effectiveness is (was) the kinesthetic use of the mouse, by
the student, to move the input vectors around. The immediate visual feedback of
where the output eigenvectors (and singular vectors) move to in response is, in
our experience, much more effective than simple animations (or static pictures).
More simply, getting the students to plot eigenvalue distributions, or to plot
eigenvector components, is valuable as an action.
An opportunity, neglected in most courses and textbooks, is the making of a con-
nection between equation solving and linear transformations. Typically, a course
or book opens with an algebraic account of equation solving. The question of how
many solutions an equation has is answered by row reduction and the defining
of column space. When transformations are introduced, equation solving is not
reconsidered. The equation Ax = b is a transformation of the unknown x, in the
domain of A, to the range, containing b. The reverse journey is equation solving,
and can be the subject of visualization. In 2-D, everything is rather trivial4, so
software allowing 3-D interactive plotting is much better. Transforming a cube
using a singular matrix, we observe that the cube is squashed flat. An equation,
or the reverse transform, is solvable only if b lies in the plane. See figure 1.

2.4 Programming

One of the most venerable introductory programming tasks is to write code for
LU factoring. One can then add partial pivoting, complete pivoting, or rook
pivoting. The topic is accessible, but difficult enough that students will really
feel a sense of accomplishment when they have succeeded.

4 We resisted the temptation to call it “2” trivial.
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Fig. 1. Transformation of the cube with a singular matrix. The three images are an
attempt to show in a static medium a student rotating the plot to see that the cube
is now flat. Ax = b has no solution because b is not in the plane. We show, however, a
projection of b onto the plane, if least-squares is part of the course.

The hard part is to get them actually to do it and not to copy someone else’s
code. This is especially true in engineering classes, where the students are so
heavily pressured that they feel that they must cut corners wherever they can.
One needs to be creative, here, in finding ways to encourage them not to cheat
themselves.

One method that we have found effective is to allow them to work in small
groups, and to allow them to use code that they find on the internet or copy
from other groups provided that they give proper credit and cite where they
found it. Students are frequently surprised that their instructors know about
Stack Overflow or Chegg as well; but then, in a work environment, any and
all tools will be allowed. With some creativity in problem assignment, enough
novel features can be used so that the online resources will only help, not solve
the complete problem for them. That’s unless they use the outright cheating
resources where the students post the problems and pay other people to give
them the solutions, of course. To combat that, you have to encourage a culture
of honesty by being honest yourself and by actually punishing people caught
cheating in that way, so that the honest students feel that they can benefit more
by remaining honest. However, that’s a very hard problem to deal with.

It is however something that people in the mathematics mechanization commu-
nity need to be aware of. For some decades now, some fully automatic servers
have been giving step-by-step solutions to math homework problems. This is only
going to get harder for educators to deal with. The statement “if anything can
be automated, it should be automated” ignores the need for the “White Box”
part of education. Some concepts need human manual work to be internalized.

Remark 1. Many students are only comfortable using computers where they
simply enter the data into prescribed fields, and push buttons to achieve pre-
programmed aims. One of the things that we want them to do is to get their
“keyboards dirty” and engage with a programming language. Doing this at the
same time as teaching them the concepts of linear algebra is a stretch. One
should expect only minimal success with getting them to write programs, and
then only if you assess them (give them marks) on their ability to do so. Time
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spent on that is time that cannot be spent on linear algebra topics. The topics
that we discuss below are chosen in part for their aptness to programming.

3 Topics

In this section we sketch some of the topics that we feel should be encountered
in a modern, mechanized, first course in linear algebra, together with how we
think that some of the described tools can help with the concepts.

3.1 The language of matrices

There is a nontrivial transition from systems of equations such as

3x+ 4y = 7

2x− 8y = 1 (1)

to the equivalent matrix equations, and most mechanized systems do not have
features to help with this transition. Matlab, for instance, expects the user to
enter the matrices. We spend some time on this transition, and the conventions
that lead to the natural rules for matrix-vector multiplication and thence to
matrix-matrix multiplication. The use of elementary matrices to encode opera-
tions on equations (especially elimination of a variable) is a crucial feature.
With beginning students, this takes time. Hand manipulation is best for this at
the beginning, but after experiencing a certain amount of tedium, the students
begin to appreciate the ability to construct and manipulate equations through
the algebraic rules of matrix multiplication5. The simple syntax of Matlab is
likely the most appreciated: A*b for matrix-vector multiplication is close toA·b, a
common human notation; omitting the · seems natural. Maple’s A.b is somewhat
less natural.
Python’s notation is similar, except for one thing. The issue is transpose. Some
linear algebra approaches are very snobbish, and insist that there is no such thing
as a row vector or column vector, only abstract vectors. Python is like this. This
can be very confusing for students. We have found it best to be explicit and
consistent about dimensions in our teaching, and to treat vectors normally as
column vectors and to treat these as basically indistinguishable from n× 1 ma-
trices (even that convention needs to be taught: one of our colleagues memorably
put it as “you row with columns (oars) when you row a boat”).
The “four ways” of interpreting matrix-matrix multiplication is something we
explicitly teach. For instance, in one of these four ways, the matrix-matrix prod-
uct AB can be usefully thought of by first thinking of B = [b1,b2, . . . ,bn] as

5 They quite like Maple’s GenerateMatrix command, which transforms linear equa-
tions with variables into matrix-vector equations. We try to be careful to introduce
this only after the students have some experience in doing the transformation by
hand.
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a collection of columns, and then AB = [Ab1,Ab2, . . . ,Abn] is then a collec-
tion of the column vectors Abk. Technological support for this can be as simple
as asking the students to construct the matrix on the right hand side explic-
itly, and verifying that the internal matrix multiplication routine produces the
same result. An advanced question is to consider parallelism in matrix-matrix
multiplication using this partition.

We also begin with complex numbers. They will be needed, so we introduce them
first thing. Without technological support, students hate complex numbers. With
technological support, complex numbers become routine.

3.2 Parametric Linear Algebra

One important feature of our course is that it is not purely numerical. Mathemat-
ical modelling frequently involves unknown parameters. One wants the solution
in terms of those parameters (if possible) to make it possible to identify those
parameters by comparing to experimental data. There is also the pedagogical
value of strengthening student’s understanding of formulas, when the answers
are not numbers but instead are formulas.

As is well-known in the computer algebra community, this can make computa-
tions much more costly and indeed some problems are known to have exponential
cost or, worse, combinatorial cost. There is significant literature on the topic,
starting with [19]. Recent work includes [10,4,8] and [11]. We will address this
issue as it comes up in the various topics. The paper [11] raises the important
point that for many practical problems with only a few parameters, perhaps only
one or two, and for problems with structure or low dimension or both, solutions
are perfectly feasible using modern computers and infrastructure.

3.3 Factoring Matrices

Factoring matrices, whether it is the Turing factoring PA = LDUR which
gives the reduced row echelon form [9], or A = QR into an orthogonal factor
Q and upper (right) triangular factor R, or any of several other factorings, is
fundamental for modern linear algebra. There is the Schur factoringA = QTQH

which gives the eigenvalues in a numerically stable way.

We teach the notion of factoring matrices as a method of solving linear systems
of equations (and of eigenvalue problems). This represents a conceptual advance
over Gaussian Elimination, and has several important consequences in a sym-
bolic context [13,9]. The most important feature in a symbolic context is that a
factoring preserves special cases.

Students can factor matrices by hand (and in the beginning, they should). This
gives them something useful to do. Elementary matrices encoding row opera-
tions, column operations, and row exchanges are all useful to teach because they
consolidate students’ knowledge into a modern framework of understanding of
linear algebra, and they do so in a way that allows the student to be active.
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Then one can introduce block matrix manipulation and block factoring, with
noncommuting elements. This gives the Schur complement and the Schur deter-
minantal formula.
Interestingly, Maple has recently begun to support matrices over noncommuting
variables via the Physics package by Edgardo Cheb–Terrab. This allows students
to manipulate block matrices with technology, although they still have to think
about dimensions. This is apparently also possible in SageMath. Here is an
example, showing the Schur complement, in Maple.
>with(Physics):
> Setup(mathematicalnotation = true):
> Setup(noncommutativeprefix = {B}):
>with(LinearAlgebra):
>A := Matrix ([[B[1, 1], B[1, 2]], [B[2, 1], B[2, 2]]] )

(2)A :=

[
B1,1 B1,2

B2,1 B2,2

]
>L := Matrix ([[1, 0], [B[2, 1] ·B[1, 1]−1, 1]])

(3)L :=

[
1 0

B2,1B1,1
−1 1

]
>U := Matrix ([[B[1, 1], B[1, 2]], [0, B[2, 2]−B[2, 1] ·B[1, 1]−1 ·B[1, 2]]] )

(4)U :=

[
B1,1 B1,2

0 B2,2 −B2,1B1,1
−1B1,2

]
>L · U

(5)

[
B1,1 B1,2

B2,1 B2,2

]
This illustrative usage of simple noncommuting scalar variables to represent
blocks inside matrices, where 1 represents an appropriately-sized identity matrix
and 0 represents a zero block, might disconcert people intent on formalizing the
computations involved. One of the things that would be necessary to properly
formalize this would be a notion of dimension of each block; in practice one
would want the dimensions to be symbolic but to match appropriately. We are
not aware of any widely-available system at present that can deal properly with
this, although there has been research in the area, such as [17,18]. Making a
package widely available that could do such computations correctly would be
very welcome.

3.4 Determinant

Approaching linear algebra via the determinant is a historically valid approach.
It is pedagogically valid, also, because the students are happier (and better off)
with having something to do, not just think about. We feel that it is “fair game”
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that the students be required to memorize the formulas for the determinant and
the inverse of a 2×2 matrix (and in fact this memorization is surprisingly useful
for them, later). Laplace expansion (determinant by minors) can be costly and
numerically dubious but is extremely useful for sparse symbolic matrices. More,
it is crucial in the one “gem” proof that we include in the course simply because
it is so pretty, namely the proof of Cramer’s Rule6 which we learned from [5].
Asking them to memorize a formula for a three-by-three determinant serves no
useful purpose, in our opinion, and letting them use technology for computation
of third or higher-order determinants seems perfectly justified.
We also demonstrate combinatorial growth by showing the determinant of fully
symbolic matrices, for a few small dimensions. Asking them to program Laplace
expansion recursively is also useful for this. One can also ask them to program
the recursive computation of determinant by the Schur determinantal formula
detA = detB11 det(B22 −B21B

−1
11 B12). Explicit computation of the inverse of

B11 should be avoided, and can be, by using a suitable factoring. The end result
can be significantly more efficient than Laplace expansion.
We spend time on the geometry of determinant and its relationship to how
area transforms under linear transformations; this is needed in calculus, and
can be motivating for the students as well because it makes a connection to
something that they already know. Computer visualizations help, here. The ones
freely available on YouTube, especially the very professionally produced ones
by 3Blue1Brown such as https://youtu.be/Ip3X9LOh2dk, are hard to compete
with. So, we do not compete, and instead share our favourites (such as that one)
with the student.
With determinant in hand, the students have a worthwhile test for linear de-
pendence. We extend this using the SVD because in the context of data error
(which our clientele will surely encounter), the notion of exact singularity or
dependence is less useful than that of ill-conditioning or near-dependence.

Least squares Matlab will silently return a least-squares solution to overdeter-
mined problems. Or, even, inconsistent problems. Therefore it is incumbent on
us as instructors to teach least squares solutions, in order that the user may
understand and appreciate what the system has done.

3.5 Eigenvalues and floating-point

We teach eigenvalues more by the “Black Box” / “White Box” approach, because
computing eigenvalues by first computing the determinant of λI −A and then
solving the polynomial is a pretty brutal hand computation for anything more
than 2 × 2 matrices. We show them what eigenvalues and eigenvectors are by
the use of eigshow or similar, and then set them to compute eigenvalues by
the technology. For instance in Figure 2 we see how to do this using Maple

6 One of us teaches Cramer’s Rule only because of this beautiful proof. Cramer’s Rule
itself is not particularly useful computationally nowadays, except in very special
situations. But that proof is so beautiful. The students seem to like it, too.

https://youtu.be/Ip3X9LOh2dk
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(from inside a Jupyter notebook). This requires a discussion of floating-point
arithmetic and backward error analysis, which we do not shy away from. Again,
our clientele will encounter data error and they must learn tools such as the
condition number (which is really just the derivative) to deal with it; putting
numerical error on the same footing as data error gives them the tools to deal
with that, as well. The computation of eigenvalues of small matrices (say, of
dimension less than 1000) is a solved problem nowadays.
Indeed we view eigenvalues as answers nowadays because the algorithms are
so good in practice (and have recently been shown to be globally convergent
in theory, as well [1]). We have had units (in some of our courses) where we
talk about companion matrices of various kinds, as tools for solving polynomial
equations and systems of polynomial equations. We discuss this in section 3.6.

Fig. 2. Using Maple from a Jupyter notebook

Eigenvalues of parametric matrices are important, for instance in dynamical
systems, and their study leads directly to bifurcation theory. We do not include
many such problems, but we have used one in particular, namely a perturbation
of Matlab’s gallery(3) matrix to examine the sensitivity of its eigenvalues to
perturbations. This is an advanced topic, however, and occurs only toward the
end of the first course (and much more frequently in the second or later course).

3.6 Special matrices

There are countless kinds of special matrices. Likely the most important in prac-
tice are symmetric (Hermitian) positive definite matrices; others include orthogo-
nal (unitary) matrices, triangular matrices, banded matrices, circulant matrices,
Toeplitz matrices, Hankel matrices, and totally positive matrices. Getting the
students to write programs that generate some of these, or factor some of these
in special ways, is quite interesting. The Cayley transform is quite important
nowadays (see e.g. [15]) in control theory and in some kinds of scientific comput-
ing, and getting students to parameterize orthogonal matrices using symmetric
matrices and the Cayley transform may teach several lessons.
While this course should include some of the most common and useful kinds
of special matrices, we feel it is also important to let the students invent some
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of their own kinds of matrices. Examples of student-generated matrices include
“checkerboard” matrices which alternate nonzero entries with zero entries and
“anti-tridiagonal” matrices. We have found it fun to let the students play, as
they program. Sometimes even their bugs give rise to interesting developments.

Symmetric Positive Definite matrices

“Symmetric positive definiteness is one of the highest accolades to which
a matrix can aspire.”

—Nicholas J. Higham, in [12, p. 196]

Symmetric Positive Definite (SPD) matrices arise very often in practice. For an
enlightening discussion of just why this is so, see [20]. The inductive proof of
unicity of the Cholesky factoring for SPD matrices (see e.g. [12, p. 196]) can
be turned into a recursive program for its computation, and this is a useful
programming exercise for the students. The many applications of SPD matrices
can be motivating for students, but having the technology to solve them is clearly
essential.

Companion matrices

“What does this all have to do with matrices? The connection is through
the companion matrix.”

—Cleve Moler, in [16].

Another thing technology really makes possible is the use of companion matrices
and resultants in the solution of polynomial equations. The topic is surprisingly
rich, not just useful. Algebraically, companion matrices for a monic polynomial
p(z) are matrix representations of multiplication by z in the ideal generated by
p(z). Companion matrices are not unique, and indeed there are open problems as
to which is the “best” companion for a given polynomial p(z), as we will discuss.
Extending the idea to non-monic polynomials leads to generalized eigenvalue
problems p(z) = det(λB−A) where now B is not necessarily the identity matrix
(or of full rank). Using other polynomial bases (e.g. Chebyshev, Bernstein, or
Lagrange interpolational bases) leads again to surprisingly deep waters. Given a
(monic) polynomial over the integers, one can ask which companion matrix over
the integers has minimal height? The “height” of a matrix is the infinity norm
of the matrix made into a vector; that is, the largest absolute value of any entry.
No good algorithms for this problem are known [7]. In the case of Mandelbrot
polynomials p0 = 0 and pn+1(z) = zp2n(z) + 1 there are companions of height 1,
while the maximum coefficient of pn(z) is exponential in the degree of pn(z) (and
therefore doubly exponential in n). Smaller height matrices seem to be easier to
compute eigenvalues for.
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3.7 Proof and formal methods

“I have absolutely no interest in proving things that I know are true.”

—the American physicist Henry Abarbanel, at a conference in 1994

Entering students in North America have long since been deprived of an intro-
ductory course on proof (which was, classically, Euclidean geometry). Typically
the first course in which they encounter “proof” nowadays is their first linear
algebra class. For the clientele described previously, we feel it is more important
to motivate proof at this stage. Students who are asked to listen to a proof of
something they consider obvious (or for which they would be happy to take the
professor’s word, such as detAB = detA · detB) do not learn much. Ed Bar-
beau put it thus: “there should be no proof without doubt” (on the part of the
student).
Asking students to write programs is, we believe, a useful intermediate step. In
addition to developing the necessary habit of precise thinking, writing programs
makes students receptive to the idea of proving their programs correct (after they
have witnessed a few failures, which are somehow always surprising to beginning
programmers).

4 Assessment

Assessment is critical for the success of a course. Students want bribes (marks)
in order to spend time on any particular topic. If a topic is not assessed, then it
can be safely skipped and the student can rationally spend their effort on topics
that actually will be assessed.
The recent introduction of chat AIs that generate plausible-sounding answers
has thrown a further monkey wrench into assessment of courses by project, a
method that we have heretofore favoured. It is even the case that these chat AIs
can, perhaps by plagiarising GitHub and other software sources, provide readable
(and sometimes even working) software to students. We may have to go back
to individual exams with direct supervision: essentially, oral examinations. This
is so labour intensive that it seems impractical for the very large linear algebra
classes that our Universities want us to teach, however.
There are several strategies for written exams that still may be of interest, how-
ever, and we give some of them here. The first is the venerable multiple-choice
exam. For computations, one can remove the “reverse engineering” method by
asking not for the exact answer, but rather asking for the closest answer not
larger than the true answer. For instance, supposing that the true answer was√
2, one could list decimal answers (a) 1.2 (b) 1.3 (c) 1.5 and (d) 1.8. The de-

sired answer would be (b), 1.3 . This tool is surprisingly effective, although many
students view it as being “unfair.”
A second assessment strategy is to use computer-generated individual questions,
where the student is expected to work at their computer (or at a locked-down
lab computer) and provide full notes on their work. These kinds of exams are
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very stressful for students, however. They are even more stressful if intrusively-
monitoring software is involved (and there may be human rights abuses commit-
ted by those pieces of software which the instructor or administration will be
responsible for).
For the purpose of discussion, we will assume that no intrusive monitoring soft-
ware is used, and that measures are taken to alleviate student stress: for instance,
one can give out “practice” exams ahead of time.
Since we want to include the use of mechanized tools into the assessment, testing
in a computational environment is quite natural. If the students know that they
will be tested on their competence in (say) Python, then they will spend some
effort to learn it. Incorporating personalized questions into such exams then
becomes both feasible and informative.

5 Promoting agreement on syllabus change

Some of our colleagues and administrative structures have been very support-
ive of innovation along these lines. Others have been, well, reactionary. Using
technology is more labour intensive than is re-using the same old linear algebra
textbooks, problem sets, and exam questions. Using technology also requires con-
tinual re-training because the technologies keep changing. Some people resent
being told that they have to change in order to do their jobs well in a changing
environment.
We give an example here of a suboptimal linear algebra exam question, taken
from last year’s multi-section course at Western7, taught both by progressive and
regressive colleagues. The exam took place without notes, books, calculators, or
computers. Students are allowed by law (in some parts of the world) to have
access to their phones, but many universities will attempt to restrict that, too.
The exams at Western typically have quite alarming language on the cover sheet
saying that students caught with a cell phone will be given a zero. We feel that
this is a lamentable state.
The question was: Find the inverse of the matrix

A =

 2 1 0
1 0 −1
0 1 1

 . (6)

This question does have a few virtues. For one, it is something the students can
do. It was worth three marks, which the students could grind out.
But it also has some serious flaws. Probably the most serious is that it does
not test anything that the students will really need in their future use of linear
algebra. There were calculators thirty years ago that could solve this problem
in under a second. No one is going to invert 3 × 3 matrices by hand any more,
unless there is something special about it. [There is something special about

7 A simple web search for “Math 1600 Western” brings the entire exam up, if you wish
to see the entire context.
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this matrix; it is unimodular, so that the elements of the inverse are all integers.
That didn’t happen by chance, so we suspect the examiners chose the question
so as not to strain the student’s arithmetic overmuch.]
More, not only will students not need to invert by hand, they usually will not
need to invert at all. The inversion of matrices is really only of very specialized
concern nowadays. There are statistical applications where the elements of the
inverse are what is wanted; but for the most part, “Anything that you can do
with the matrix inverse can be done without it.” Matrix factorings are much
more important.
Students are rational creatures. If this is the kind of question that they have to
answer in order to pass, then they will spend their time trying to find strategies
to give good answers to this kind of question. They will do that at the expense
of time spent learning to program (for instance).
This represents a significant lost opportunity for the student and for this Uni-
versity. Indeed, the absolute explosion in on-line courses (for instance, at bril-
liant.org, where they claim that interactive learning is six times more effective
than lectures) is a direct response to the failure of many universities to adapt
their courses. Students resent having to pay twice to get the knowledge they
actually want and need. The next few years are going to be “interesting.”
One way to repair that particular question might be to ask if the matrix factors
into a lower triangular and upper triangular factor, without pivoting. The ma-
trix is tridiagonal, so this variation has fewer computations, although this time
involving fractions (just 1/2 though). This is something that could be asked
even if the student has access to technology during the exam. The details of the
computation are not that important—it is just arithmetic—but the question of
whether or not the factoring can be done without pivoting would require some
understanding of the process involved.

6 Concluding Remarks

The state of the art for learning linear algebra is, to our minds, unsatisfactory,
though getting better. Technological platforms are split: some are proprietary,
while some others are unsupported at the level needed for reliable use. Methods
and syntax are not standardized (or, rather, there are too many standards). The
textbooks largely do not integrate mechanized mathematical tools into the learn-
ing process. [A very notable exception is [21], which uses Matlab extensively.]
Yet failing to use a mechanized approach does a true disservice to students who
will go on to practice linear algebra in some kind of mechanized environment.
The role of technology, including formal methods, is therefore multiplex. We
believe that people must be trained in its use. In particular, people must be
trained to want proof, and to want formal methods. We feel that having students
write their own programs plays a motivating role in that training as well as a
developmental role. The first linear algebra course is important not only because
its tools and concepts are critical for science, but also as a venue for teaching
the responsible use of mathematical technology.

https://brilliant.org
https://brilliant.org
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