Skip to main content

Energy Efficient LSTM Accelerators for Embedded FPGAs Through Parameterised Architecture Design

  • Conference paper
  • First Online:
Architecture of Computing Systems (ARCS 2023)

Abstract

Long Short-term Memory Networks (LSTMs) are a vital Deep Learning technique suitable for performing on-device time series analysis on local sensor data streams of embedded devices. In this paper, we propose a new hardware accelerator design for LSTMs specially optimised for resource-scarce embedded Field Programmable Gate Arrays (FPGAs). Our design improves the execution speed and reduces energy consumption compared to related work. Moreover, it can be adapted to different situations using a number of optimisation parameters, such as the usage of DSPs or the implementation of activation functions. We present our key design decisions and evaluate the performance. Our accelerator achieves an energy efficiency of 11.89 GOP/s/W during a real-time inference with 32873 samples/s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pytorch.org/docs/stable/generated/torch.nn.Hardtanh.html.

  2. 2.

    https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html.

  3. 3.

    https://doi.org/10.5281/zenodo.3939793.

  4. 4.

    https://github.com/es-ude/elastic-ai.creator.

  5. 5.

    https://www.xilinx.com/products/technology/power/xpe.html.

References

  1. Boutros, A., et al.: Beyond peak performance: comparing the real performance of ai-optimized FPGAS and GPUs. In: 2020 International Conference on Field-Programmable Technology (ICFPT), pp. 10–19. IEEE (2020)

    Google Scholar 

  2. Burger, A., Urban, P., Boubin, J., Schiele, G.: An architecture for solving the eigenvalue problem on embedded FPGAS. In: Brinkmann, A., Karl, W., Lankes, S., Tomforde, S., Pionteck, T., Trinitis, C. (eds.) ARCS 2020. LNCS, vol. 12155, pp. 32–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52794-5_3

    Chapter  Google Scholar 

  3. Cao, S., et al.: Efficient and effective sparse LSTM on FPGA with bank-balanced sparsity. In: Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 63–72 (2019)

    Google Scholar 

  4. Chen, J., Hong, S., He, W., Moon, J., Jun, S.W.: Eciton: very low-power LSTM neural network accelerator for predictive maintenance at the edge. In: 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), pp. 1–8. IEEE (2021)

    Google Scholar 

  5. Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE 107(8), 1655–1674 (2019)

    Article  Google Scholar 

  6. Conti, F., Cavigelli, L., Paulin, G., Susmelj, I., Benini, L.: Chipmunk: a systolically scalable 0.9 mm 2, 3.08 gop/s/mw@ 1.2 mw accelerator for near-sensor recurrent neural network inference. In: 2018 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4. IEEE (2018)

    Google Scholar 

  7. Fu, R., Zhang, Z., Li, L.: Using LSTM and GRU neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328. IEEE (2016)

    Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Huang, C.J., Kuo, P.H.: A deep CNN-LSTM model for particulate matter (PM\(_{2. 5}\)) forecasting in smart cities. Sensors 18(7), 2220 (2018)

    Article  Google Scholar 

  10. Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient inference: a whitepaper. arXiv preprint arXiv:1806.08342 (2018)

  11. Lara-Benítez, P., Carranza-García, M., Riquelme, J.C.: An experimental review on deep learning architectures for time series forecasting. Int. J. Neural Syst. 31(03), 2130001 (2021)

    Article  Google Scholar 

  12. Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Phil. Trans. R. Soc. A 379(2194), 20200209 (2021)

    Article  MathSciNet  Google Scholar 

  13. Lindemann, B., Müller, T., Vietz, H., Jazdi, N., Weyrich, M.: A survey on long short-term memory networks for time series prediction. Proc. CIRP 99, 650–655 (2021)

    Article  Google Scholar 

  14. Manjunath, N.K., Paneliya, H., Hosseini, M., Hairston, W.D., Mohsenin, T., et al.: A Low-power LSTM processor for multi-channel brain EEG artifact detection. In: 2020 21st International Symposium on Quality Electronic Design (ISQED), pp. 105–110. IEEE (2020)

    Google Scholar 

  15. Qian, C., Ling, T., Schiele, G.: Enhancing energy-efficiency by solving the throughput bottleneck of LSTM cells for embedded FPGAS. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol. 1752, pp. 594–605. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23618-1_40

  16. Varadharajan, S.K., Nallasamy, V.: P-SCADA-a novel area and energy efficient FPGA architectures for LSTM prediction of heart arrthymias in BIoT applications. Expert. Syst. 39(3), e12687 (2022)

    Article  Google Scholar 

  17. Yang, Y., Deng, L., Wu, S., Yan, T., Xie, Y., Li, G.: Training high-performance and large-scale deep neural networks with full 8-bit integers. Neural Netw. 125, 70–82 (2020)

    Article  Google Scholar 

  18. Zhang, Y., et al.: A power-efficient accelerator based on FPGAs for LSTM network. In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp. 629–630. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Federal Ministry of Economic Affairs and Climate Protection of Germany in the RIWWER project (01MD22007C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, C., Ling, T., Schiele, G. (2023). Energy Efficient LSTM Accelerators for Embedded FPGAs Through Parameterised Architecture Design. In: Goumas, G., Tomforde, S., Brehm, J., Wildermann, S., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2023. Lecture Notes in Computer Science, vol 13949. Springer, Cham. https://doi.org/10.1007/978-3-031-42785-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42785-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42784-8

  • Online ISBN: 978-3-031-42785-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics