Skip to main content

Predicting Physical Disturbances in Organic Computing Systems Using Automated Machine Learning

  • Conference paper
  • First Online:
Architecture of Computing Systems (ARCS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13949))

Included in the following conference series:

  • 287 Accesses

Abstract

Robustness against internal or external disturbances is a key competence of Organic Computing Systems. Hereby, a rarely discussed aspect are physical disturbances, therefore, failures or breakdowns that affect a systems physical components. Before experiencing such a disturbance, physical components may show various measurable signs of deterioration that might be assessed through sensor data. If interpreted correctly, it would be possible to predict future physical disturbances and act appropriately in order to prevent them from possibly harming the overall system. As the actual structure of such data as well as the behaviour that disturbances produce might not be known a priori, it is of interest to equip Organic Computing Systems with the ability to learn to predict them autonomously. We utilize the Automated Machine Learning Framework TPOT for an online-learning-inspired methodology for learning to predict physical disturbances in an iterative manner. We evaluate our approach using a freely available dataset from the broader domain of Predictive Maintenance research and show that our approach is able to build predictors with reasonable prediction quality autonomously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance.

References

  1. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction: on the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann Publishers Inc., Burlington (1998)

    MATH  Google Scholar 

  2. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl 6(1), 20–29 (2004)

    Article  Google Scholar 

  3. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. Soft. Comput. 6(3), 144–153 (2002)

    Article  MATH  Google Scholar 

  4. Carvalho, T.P., Soares, F.A., Vita, R., Francisco, R.D.P., Basto, J.P., Alcalá, S.G.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019)

    Article  Google Scholar 

  5. Gęca, J.: Performance comparison of machine learning algotihms for predictive maintenance. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 10 (2020)

    Google Scholar 

  6. Görlich-Bucher, M.: Dealing with hardware-related disturbances in organic computing systems. In: INFORMATIK 2019. Gesellschaft für Informatik eV (2019)

    Google Scholar 

  7. Hrnjica, B., Softic, S.: Explainable AI in manufacturing: a predictive maintenance case study. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds.) APMS 2020. IAICT, vol. 592, pp. 66–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57997-5_8

    Chapter  Google Scholar 

  8. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017). http://jmlr.org/papers/v18/16-365

  9. Müller-Schloer, C., Tomforde, S.: Organic Computing-Technical Systems for Survival in the Real World. Springer, Cham (2017)

    Book  Google Scholar 

  10. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-based pipeline optimization tool for automating data science. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 485–492. GECCO 2016, ACM, New York, NY, USA (2016)

    Google Scholar 

  11. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Schmitt, J., Roth, M., Kiefhaber, R., Kluge, F., Ungerer, T.: Using an automated planner to control an organic middleware. In: 2011 IEEE Fifth International Conference on Self-Adaptive and Self-Organizing Systems, pp. 71–78. IEEE (2011)

    Google Scholar 

  13. Stein, A.: Reaction learning. In: Organic Computing - Technical Systems for Survival in the Real World, pp. 287–328. Springer (2017)

    Google Scholar 

  14. Tomforde, S., Kantert, J., Müller-Schloer, C., Bödelt, S., Sick, B.: Comparing the effects of disturbances in self-adaptive systems - a generalised approach for the quantification of robustness. In: Nguyen, N.T., Kowalczyk, R., van den Herik, J., Rocha, A.P., Filipe, J. (eds.) Transactions on Computational Collective Intelligence XXVIII. LNCS, vol. 10780, pp. 193–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78301-7_9

    Chapter  Google Scholar 

  15. Tomforde, S., et al.: Observation and control of organic systems. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing-A Paradigm Shift for Complex Systems, vol. 1, pp. 325–338. Springer, Basel (2011). https://doi.org/10.1007/978-3-0348-0130-0_21

    Chapter  Google Scholar 

  16. Wang, S., Schlobach, S., Klein, M.: What is concept drift and how to measure it? In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317, pp. 241–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16438-5_17

    Chapter  Google Scholar 

  17. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 70, 409–472 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Görlich-Bucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Görlich-Bucher, M., Heider, M., Hähner, J. (2023). Predicting Physical Disturbances in Organic Computing Systems Using Automated Machine Learning. In: Goumas, G., Tomforde, S., Brehm, J., Wildermann, S., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2023. Lecture Notes in Computer Science, vol 13949. Springer, Cham. https://doi.org/10.1007/978-3-031-42785-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42785-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42784-8

  • Online ISBN: 978-3-031-42785-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics