Skip to main content

Detecting Abnormal Communication Patterns in IoT Networks Using Graph Neural Networks

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14121))

  • 321 Accesses

Abstract

Nowadays, millions of Internet of Things (IoT) devices communicate over the Internet, thus becoming potential targets for cyberattacks. Due to the limited hardware capabilities of these devices, host-based countermeasures are unlikely to be deployed on them, making network traffic analysis the only reasonable way to detect malicious activities. In this paper, we face the problem of identifying abnormal communications in IoT networks using graph-based anomaly detection methods. Although anomaly detection has already been applied to graph-based data, most existing methods have been used for static graphs, with the aim of detecting anomalous nodes. In our case, the graphs represent snapshots of the network traffic, and change with time. In this paper we compare different graph-based methods, and different graph representations of the network traffic, using two large datasets of real IoT data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, M., Shahraki, A., Taherkordi, A.: Deep learning for network traffic monitoring and analysis (NTMA): a survey. Comput. Commun. 170, 19–41 (2021). https://doi.org/10.1016/j.comcom.2021.01.021

  2. Aouini, Z., Pekar, A.: Nfstream: a flexible network data analysis framework. Comput. Netw. 204, 108719 (2022)

    Article  Google Scholar 

  3. Churcher, A., et al.: An experimental analysis of attack classification using machine learning in IOT networks. Sensors 21(2), 446 (2021)

    Google Scholar 

  4. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021)

    Google Scholar 

  5. Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed networks. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 594–602. SIAM (2019)

    Google Scholar 

  6. Fahim, M., Sillitti, A.: Anomaly detection, analysis and prediction techniques in IOT environment: a systematic literature review. IEEE Access 7, 81664–81681 (2019). https://doi.org/10.1109/ACCESS.2019.2921912

    Article  Google Scholar 

  7. Iliofotou, M., Pappu, P., Faloutsos, M., Mitzenmacher, M., Singh, S., Varghese, G.: Network monitoring using traffic dispersion graphs (TDGs). In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 315–320 (2007)

    Google Scholar 

  8. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: bot-IOT dataset. Future Gen. Comput. Syst. 100, 779–796 (2019)

    Article  Google Scholar 

  9. Lo, W.W., Layeghy, S., Sarhan, M., Gallagher, M., Portmann, M.: E-graphsage: a graph neural network based intrusion detection system for IOT. In: NOMS 2022–2022 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9. IEEE (2022)

    Google Scholar 

  10. Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M.: Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft Comput. 24(3), 1999–2012 (2019). https://doi.org/10.1007/s00500-019-04030-2

  11. Ma, X., et al.:: A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  12. Macas, M., Wu, C., Fuertes, W.: A survey on deep learning for cybersecurity: progress, challenges, and opportunities. Comput. Netw. 212, 109032 (2022). https://doi.org/10.1016/j.comnet.2022.109032

  13. Pacheco, F., Exposito, E., Gineste, M., Baudoin, C., Aguilar, J.: Towards the deployment of machine learning solutions in network traffic classification: a systematic survey. IEEE Commun. Surv. Tutor. 21(2), 1988–2014 (2019). https://doi.org/10.1109/COMST.2018.2883147

    Article  Google Scholar 

  14. Parmisano, A., Garcia, S., Erquiaga, M.J.: A Labeled Dataset with Malicious and Benign IOT Network Traffic. Stratosphere Laboratory, Praha, Czech Republic (2020)

    Google Scholar 

  15. The Guardian: DDoS attack that disrupted internet was largest of its kind in history, experts say. https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

  16. Ullah, I., Mahmoud, Q.H.: A scheme for generating a dataset for anomalous activity detection in IoT networks. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS (LNAI), vol. 12109, pp. 508–520. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47358-7_52

  17. Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural networks for anomaly detection in attributed networks. Neural Comput. Appl. 33, 12073–12085 (2021)

    Article  Google Scholar 

  18. Xu, Z., Huang, X., Zhao, Y., Dong, Y., Li, J.: Contrastive attributed network anomaly detection with data augmentation. In: Advances in Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, 16–19 May 2022, Proceedings, Part II, pp. 444–457. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05936-0_35

  19. Zheng, J., Li, D.: Gcn-tc: combining trace graph with statistical features for network traffic classification. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)

    Google Scholar 

  20. Zheng, J., Zeng, Z., Feng, T.: Gcn-eta: high-efficiency encrypted malicious traffic detection. Secur. Commun. Netw. 2022, 1–11 (2022)

    Article  Google Scholar 

  21. Zola, F., Segurola-Gil, L., Bruse, J.L., Galar, M., Orduna-Urrutia, R.: Network traffic analysis through node behaviour classification: a graph-based approach with temporal dissection and data-level preprocessing. Comput. Secur. 115, 102632 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Carletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carletti, V., Foggia, P., Vento, M. (2023). Detecting Abnormal Communication Patterns in IoT Networks Using Graph Neural Networks. In: Vento, M., Foggia, P., Conte, D., Carletti, V. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2023. Lecture Notes in Computer Science, vol 14121. Springer, Cham. https://doi.org/10.1007/978-3-031-42795-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42795-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42794-7

  • Online ISBN: 978-3-031-42795-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics