Skip to main content

An Ontology for Representing and Querying Semantic Trajectories in the Maritime Domain

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2023)

Abstract

This paper presents the design of an ontology for the representation of enriched semantic trajectories in the maritime domain. The ontology supports vessel trajectories, at different levels of detail, enriched with vessel characteristics, weather information and events, as well as topological and proximity relations to geographical areas of interest (such as ports and protected areas). The paper describes how raw data from diverse data sources are integrated in order to produce enriched semantic trajectories, represented as linked data in RDF, in compliance with the proposed ontology. Moreover, the added-value of the ontology is demonstrated by means of semantic queries that retrieve information about moving vessels and their trajectories using complex criteria. The linked data and our ontology are publicly available as five star linked open data, offering a valuable resource to the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.vessel-AI.eu/.

  2. 2.

    https://help.marinetraffic.com/hc/en-us/articles/205579997-What-is-the-significance-of-the-AIS-SHIPTYPE-number, http://www.fao.org/fishery/cwp/handbook/h/en.

  3. 3.

    http://www.ontologydesignpatterns.org/ont/dul/DUL.owl.

  4. 4.

    http://www.opengis.net/ont/geosparql.

  5. 5.

    https://www.w3.org/2006/time.

  6. 6.

    https://codes.wmo.int/.

  7. 7.

    Accessible at: http://83.212.101.70/demo.html.

  8. 8.

    https://sophox.org/.

References

  1. Artikis, A., Zissis, D. (eds.): Guide to Maritime Informatics. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61852-0

    Book  Google Scholar 

  2. Batty, E.: Data analytics enables advanced AIS applications. In: Doulkeridis, C., Vouros, G.A., Qu, Q., Wang, S. (eds.) MATES 2017. LNCS, vol. 10731, pp. 22–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73521-4_2

    Chapter  Google Scholar 

  3. Brüggemann, S., Bereta, K., Xiao, G., Koubarakis, M.: Ontology-based data access for maritime security. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 741–757. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_45

    Chapter  Google Scholar 

  4. Fikioris, G., et al.: Fine-tuned compressed representations of vessel trajectories. In Proceedings of CIKM, pp. 2429–2436 (2020)

    Google Scholar 

  5. Fileto, R., et al.: The Baquara\({}^{\text{2 }}\) knowledge-based framework for semantic enrichment and analysis of movement data. Data Knowl. Eng. 98, 104–122 (2015)

    Article  Google Scholar 

  6. Hu, Y., et al.: A geo-ontology design pattern for semantic trajectories. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 438–456. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-01790-7_24

    Chapter  Google Scholar 

  7. Kalyvas, C., Kokkos, A., Tzouramanis, T.: A survey of official online sources of high-quality free-of-charge geospatial data for maritime geographic information systems applications. Inf. Syst. 65, 36–51 (2017)

    Article  Google Scholar 

  8. Kotis, K., Vouros, G.A.: Human-centered ontology engineering: the HCOME methodology. Knowl. Inf. Syst. 10(1), 109–131 (2006)

    Article  Google Scholar 

  9. Krisnadhi, A., et al.: The geolink modular oceanography ontology. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 301–309. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_19

    Chapter  Google Scholar 

  10. Parent, C., et al.: Semantic trajectories modeling and analysis. ACM Comput. Surv. 45(4):42:1–42:32, 2013

    Google Scholar 

  11. Ray, C., et al.: Mobility data: a perspective from the maritime domain. In: Big Data Analytics for Time-Critical Mobility Forecasting, pp. 3–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45164-6_1

    Chapter  Google Scholar 

  12. Riga, M., et al.: EUCISE-OWL: an ontology-based representation of the common information sharing environment (CISE) for the maritime domain. Semantic Web 12(4), 603–615 (2021)

    Article  Google Scholar 

  13. Santipantakis, G.M., et al.: Specification of semantic trajectories supporting data transformations for analytics: the datAcron ontology. In Proceedings of SEMANTiCS, pp. 17–24. ACM (2017)

    Google Scholar 

  14. Santipantakis, G.M., et al.: RDF-Gen: Generating RDF triples from big data sources. Knowl. Inf. Syst. 64(11), 2985–3015 (2022)

    Article  Google Scholar 

  15. Santipantakis, G.M., Kotis, K.I., Vouros, G.A., Doulkeridis, C.: RDF-Gen: Generating RDF from streaming and archival data. In Proceedings of WIMS, New York, USA (2018)

    Google Scholar 

  16. Santipantakis, G.M., Vouros, G.A., Glenis, A., Doulkeridis, C., Vlachou, A. .: The datAcron ontology for semantic trajectories. In Proceedings of ESWC, vol. 10577, pp. 26–30. Springer (2017). https://doi.org/10.5281/zenodo.570885

  17. Spaccapietra, S., et al.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126–146 (2008)

    Article  Google Scholar 

  18. Tzitzikas, Y.: Integrating heterogeneous and distributed information about marine species through a top level ontology. In: Garoufallou, E., Greenberg, J. (eds.) MTSR 2013. CCIS, vol. 390, pp. 289–301. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03437-9_29

    Chapter  Google Scholar 

  19. Vouros, G.A., et al.: The datAcron ontology for the specification of semantic trajectories - specification of semantic trajectories for data transformations supporting visual analytics. J. Data Semant. 8(4), 235–262 (2019)

    Article  Google Scholar 

  20. Vouros, G.A., et al. (eds.). Big Data Analytics for Time-Critical Mobility Forecasting, From Raw Data to Trajectory-Oriented Mobility Analytics in the Aviation and Maritime Domains. Springer (2020). https://doi.org/10.1007/978-3-030-45164-6

  21. Yan, Z., Macedo, J., Parent, C., Spaccapietra, S.: Trajectory ontologies and queries. Trans. GIS 12(s1), 75–91 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Horizon 2020 Framework Programme of the European Union under grant agreement No 957237 (project VesselAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Doulkeridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

M. Santipantakis, G., Doulkeridis, C., A. Vouros, G. (2023). An Ontology for Representing and Querying Semantic Trajectories in the Maritime Domain. In: Abelló, A., Vassiliadis, P., Romero, O., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2023. Lecture Notes in Computer Science, vol 13985. Springer, Cham. https://doi.org/10.1007/978-3-031-42914-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42914-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42913-2

  • Online ISBN: 978-3-031-42914-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics