Skip to main content

Skyline-Based Temporal Graph Exploration

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2023)

Abstract

An important problem in studying temporal graphs is detecting interesting events in their evolution, defined as time intervals of significant stability, growth, or shrinkage. We consider graphs whose nodes have attributes, for example in a network between individuals, the attributes may correspond to demographics, such as gender. We build aggregated graphs where nodes are grouped based on the values of their attributes, and seek for events at the aggregated level, for example, time intervals of significant growth between individuals of the same gender. We propose a novel approach based on temporal graph skylines. A temporal graph skyline considers both the significance of the event (measured by the number of graph elements that remain stable, are created, or deleted) and the length of the interval when the event appears. We also present experimental results of the efficiency and effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/etsoukanara/skylinexplore.

  2. 2.

    https://pypi.org/project/gender-guesser.

References

  1. Aghasadeghi, A., Moffitt, V.Z., Schelter, S., Stoyanovich, J.: Zooming out on an evolving graph. In: Proceedings of the 23rd International Conference on Extending Database Technology, EDBT 2020. OpenProceedings.org (2020)

    Google Scholar 

  2. Andriamampianina, L., Ravat, F., Song, J., Vallès-Parlangeau, N.: Graph Data Temporal Evolutions: From Conceptual Modelling To Implementation. Data Knowl, Eng (2022)

    Google Scholar 

  3. Cattuto, C., Quaggiotto, M., Panisson, A., Averbuch, A.: Time-varying social networks in a graph database: a neo4j use case. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, co-located with SIGMOD/PODS 2013. CWI/ACM (2013)

    Google Scholar 

  4. Debrouvier, A., Parodi, E., Perazzo, M., Soliani, V., Vaisman, A.A.: A model and query language for temporal graph databases. VLDB J. (2021)

    Google Scholar 

  5. Gemmetto, V., Barrat, A., Cattuto, C.: Mitigation of infectious disease at school: targeted class closure vs school closure. BMC Infectious Diseases (2014)

    Google Scholar 

  6. Ghrab, A., Skhiri, S., Jouili, S., Zimányi, E.: An analytics-aware conceptual model for evolving graphs. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40131-2_1

    Chapter  Google Scholar 

  7. Guminska, E., Zawadzka, T.: EvOLAP Graph – evolution and OLAP-aware graph data model. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2018. CCIS, vol. 928, pp. 75–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99987-6_6

    Chapter  Google Scholar 

  8. Huang, X., Jensen, C.S.: In-route skyline querying for location-based services. In: Kwon, Y.-J., Bouju, A., Claramunt, C. (eds.) W2GIS 2004. LNCS, vol. 3428, pp. 120–135. Springer, Heidelberg (2005). https://doi.org/10.1007/11427865_10

    Chapter  Google Scholar 

  9. Jang, S., Yoo, J.: Processing continuous skyline queries in road networks. In: International Symposium on Computer Science and its Applications (2008)

    Google Scholar 

  10. Keles, I., Hose, K.: Skyline queries over knowledge graphs. In: The Semantic Web - ISWC 2019. Springer International Publishing (2019)

    Google Scholar 

  11. Kriegel, H.P., Renz, M., Schubert, M.: Route skyline queries: A multi-preference path planning approach. In: 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010) (2010)

    Google Scholar 

  12. Moffitt, V.Z., Stoyanovich, J.: Temporal graph algebra. In: Proceedings of The 16th International Symposium on Database Programming Languages, DBPL 2017. ACM (2017)

    Google Scholar 

  13. Rost, C., Gómez, K., Fritzsche, P., Thor, A., Rahm, E.: Exploration and analysis of temporal property graphs. In: Proceedings of the 24th International Conference on Extending Database Technology, EDBT 2021. OpenProceedings.org (2021)

    Google Scholar 

  14. Rost, C., et al.: Distributed temporal graph analytics with GRADOOP. VLDB J. (2022)

    Google Scholar 

  15. Semertzidis, K., Pitoura, E.: Time traveling in graphs using a graph database. In: Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT Workshops 2016. CEUR-WS.org (2016)

    Google Scholar 

  16. Tsoukanara, E., Koloniari, G., Pitoura, E.: Graphtempo: An aggregation framework for evolving graphs. In: Proceedings 26th International Conference on Extending Database Technology, EDBT 2023. OpenProceedings.org (2023)

    Google Scholar 

  17. Tsoukanara, E., Koloniari, G., Pitoura, E.: TempoGRAPHer: A tool for aggregating and exploring evolving graphs. In: Proceedings 26th International Conference on Extending Database Technology, EDBT 2023. OpenProceedings.org (2023)

    Google Scholar 

  18. Zheng, W., Lian, X., Zou, L., Hong, L., Zhao, D.: Online subgraph skyline analysis over knowledge graphs. IEEE Transactions on Knowledge and Data Engineering (2016)

    Google Scholar 

  19. Zou, L., Chen, L., Özsu, M.T., Zhao, D.: Dynamic skyline queries in large graphs. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) Database Systems for Advanced Applications. Springer, Berlin Heidelberg (2010)

    Google Scholar 

Download references

Acknowledgments

Research work supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “1st Call for H.F.R.I. Research Projects to Support Faculty Members & Researchers and Procure High-Value Research Equipment” (Project Number: HFRI-FM17-1873, GraphTempo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia Tsoukanara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsoukanara, E., Koloniari, G., Pitoura, E. (2023). Skyline-Based Temporal Graph Exploration. In: Abelló, A., Vassiliadis, P., Romero, O., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2023. Lecture Notes in Computer Science, vol 13985. Springer, Cham. https://doi.org/10.1007/978-3-031-42914-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42914-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42913-2

  • Online ISBN: 978-3-031-42914-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics