Skip to main content

A Convolution Neural Network Based Displaced Vertex Trigger for the Belle II Experiment

  • Conference paper
  • First Online:
Applied Reconfigurable Computing. Architectures, Tools, and Applications (ARC 2023)

Abstract

The Belle II experiment in Tsukuba, Japan, searches for physics beyond the Standard Model. Electrons and positrons are accelerated in the SuperKEKB collider to collide at the interaction point in the Belle II detector. Since the resulting data volume is too large, a multi-stage trigger system is installed to sort out physically irrelevant events. In order to find decays with displaced vertex, which are candidates for the indirect detection of dark matter, the FPGA-based level 1 trigger has to be upgraded. A convolution neural network (CNN) with parallel convolution presented in this work enables the finding of displaced vertex tracks. To do this, the CNN must process 32,000,000 frames per second in parallel and provide an estimate of the origin of these tracks for each frame. The complete system has been successfully implemented on the FPGA platform (XCVU160) used in the experiment and meets the specified requirements of the trigger system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belle II Collaboration. Accessed 03 May 2023. https://www.belle2.org/

  2. Abe, T.: Belle II Collaboration 2010 “Belle II Technical Design Report”. arXiv arXiv:1011.0352

  3. Lai, Y.T., et al.: Development of the Level-1 track trigger with Central Drift Chamber detector in Belle II experiment and its performance in SuperKEKB 2019 Phase 3 operation. J. Instrument. 15(06), C06063 (2020)

    Google Scholar 

  4. Unger, K.L., Bähr, S., Becker, J., Iwasaki, Y., Kim, K., Lai, Y.T.: Realization of a state machine based detection for Track Segments in the trigger system of the Belle II experiment. In: Proceedings of Topical Workshop on Electronics for Particle Physics Proceedings of Science, vol. 370 (2020). https://doi.org/10.22323/1.370.0145

  5. Won, E., Moon, H.: Development of an event time finding algorithm for multi-wire drift chamber-based Level-1 trigger system in the Belle II experiment. J. Korean Phys. Soc. 80, 1–6 (2022)

    Google Scholar 

  6. Won, E., Kim, J.B., Ko, B.R.: Three-dimensional fast tracker for the central drift chamber based level-1 trigger system in the Belle II experiment. J. Korean Phys. Soc. 72(1), 33–37 (2018). https://doi.org/10.3938/jkps.72.33

    Article  Google Scholar 

  7. Baehr, S., et al.: Low latency neural networks using heterogenous resources on FPGA for the Belle II trigger. In: Connecting the Dots and Workshop on Intelligent Trackers (2019)

    Google Scholar 

  8. Iwasaki, Y., Cheon, B., Won, E., Varner, G.: Level 1 trigger system for the Belle II experiment. In: 2010 17th IEEE-NPSS Real Time Conference, pp. 1–9. IEEE (2010)

    Google Scholar 

  9. Köhne, J.K., et al.: “Realization of a second level neural network trigger for the H1 experiment at HERA” nuclear instruments and methods in physics research section A: accelerators. Spectromet. Detect. Assoc. Equip. 389, 128–133 (1997). https://doi.org/10.1016/S0168-9002(97)00062-4

  10. Kiesling, C.M., et al.: The H1 neural network trigger project. In: AIP Conference Proceedings, vol. 583, pp.36–44 (2002). https://doi.org/10.1063/1.1405259

  11. Baehr, S., et al.: A neural network on FPGAs for the z-vertex track trigger in Belle II. J. Instrument. (2017). https://doi.org/10.1088/1748-0221/12/03/C03065

    Article  Google Scholar 

  12. Baehr, S., et al.: Data reduction and readout triggering in particle physics experiments using neural networks on fpgas. In: 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), pp. 1–4 (2018). https://doi.org/10.1109/NANO.2018.8626239

  13. Baehr, S., et al.: Low latency neural networks using heterogenous resources on fpga for the Belle II trigger. arXiv https://doi.org/10.48550/arXiv.1910.13679 (2019)

  14. Unger, K.L., et al.: Operation of the neural z-vertex track trigger for Belle II in 2021-a hardware perspective. In: Journal of Physics: Conference Series (2023). https://doi.org/10.1088/1742-6596/2438/1/012056

  15. Hartmann, F., et al.: The phase-2 upgrade of the CMS level-1 trigger. CERN-LHCC-2020-004, CMS-TDR-021 (2020)

    Google Scholar 

  16. Alimena, J., et al.: Fast convolutional neural networks for identifying long-lived particles in a high-granularity calorimeter. J. Instrument. 15, P12006 (2020). https://doi.org/10.1088/1748-0221/15/12/P12006

  17. Duarte, J., et al.: FPGA-accelerated machine learning inference as a service for particle physics computing. Comput. Softw. Big Sci. 3(1), 1–15 (2019). https://doi.org/10.1007/s41781-019-0027-2

    Article  Google Scholar 

  18. Coelho, C.N., Kuusela, A., Zhuang, H., Aarrestad, T., Loncar, V., Ngadiuba, J., et al.: Automatic deep heterogeneous quantization of deep neural networks for ultra low-area, low-latency inference on the edge at particle colliders. Nat. Mach. Intell. (2020). https://doi.org/10.1038/s42256-021-00356-5

  19. Loncar, V., Pierini, M., Summers, S., Di Guglielmo, G., Duarte, J., Harris, P., et al.: Compressing deep neural networks on FPGAs to binary and ternary precision with hls4ml. Mach. Learn. 2, 015001 (2020 ). https://doi.org/10.1088/2632-2153/

  20. Aarrestad, T., Loncar, V., Ghielmetti, N., Pierini, M., Summers, S., Ngadiuba, J., et al.: Fast convolutional neural networks on FPGAs with hls4ml’. Mach. Learn. Sci. Tech. 2, 045015 (2021). https://doi.org/10.1088/2632-2153/ac0ea1

    Article  Google Scholar 

  21. Deiana, A., et al.: Applications and techniques for fast machine learning in science. Front Big Data Sec. Big Data AI High Energy Phys. 5, 787421 (2022). https://doi.org/10.3389/fdata.2022.787421

Download references

Acknowledgments

Funded by the German Federal Ministry of Education and Research under “Verbundprojekt 05H2021 (ErUM-FSP T09) - Belle II: Pixeldetektor, Software und erste Datenanalysen”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Unger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Unger, K. et al. (2023). A Convolution Neural Network Based Displaced Vertex Trigger for the Belle II Experiment. In: Palumbo, F., Keramidas, G., Voros, N., Diniz, P.C. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2023. Lecture Notes in Computer Science, vol 14251. Springer, Cham. https://doi.org/10.1007/978-3-031-42921-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42921-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42920-0

  • Online ISBN: 978-3-031-42921-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics