Skip to main content

On-FPGA Spiking Neural Networks for Multi-variable End-to-End Neural Decoding

  • Conference paper
  • First Online:
Applied Reconfigurable Computing. Architectures, Tools, and Applications (ARC 2023)

Abstract

In the field of brain-machine interface (BMI), deep learning algorithms have been steadily advancing as the go-to instrument for the key task of neural decoding. However, to function in real-time on portable devices, these algorithms must adhere to stringent limitations on computational power and memory. In this work, we exploit spiking neural networks (SNNs) within a real-time neural decoding system deployed on a low-end Artix-7 FPGA. The system is capable of decoding the spike activity in intracortical neural signals, recorded by a 96-channels microelectrode array, to continuously and concurrently track five target variables in a reach-to-grasp experiment. We have assessed our approach on a widely used reference dataset, achieving a decoding accuracy comparable with alternatives in literature, which exploit more complex deep learning models on the same dataset to decode a single target variables. Our system uses around 20 times less parameters than other non-SNN approaches and consumes 56.4 mW.

The authors acknowledge funding from Sardegna Ricerche, Bando “PROOF of CONCEPT - Valorizzazione dei risultati della ricerca in biomedicina” - PO FESR 2014–2020 - Deep-ECGEE project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://lava-nc.org/index.html.

  2. 2.

    https://lava-nc.org/lava-lib-dl/slayer/slayer.html.

  3. 3.

    https://github.com/lava-nc/lava-dl/blob/main/tutorials/lava/lib/dl/slayer/pilotnet/train.ipynb.

References

  1. Petrini, F.M., et al.: Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann. Neurol. 85(1), 137–154 (2019)

    Article  Google Scholar 

  2. Moses, D.A., et al.: Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. Engl. J. Med. 385(3), 217–227 (2021)

    Article  Google Scholar 

  3. Nurmikko, A.: Challenges for large-scale cortical interfaces. Neuron 108(2), 259–269 (2020)

    Article  Google Scholar 

  4. Busia, P., et al.: EEGformer: transformer-based epilepsy detection on raw EEG traces for low-channel-count wearable continuous monitoring devices. In: 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 640–644 (2022). https://doi.org/10.1109/BioCAS54905.2022.9948637

  5. Wang, X., Lin, X., Dang, X.: Supervised learning in spiking neural networks: A review of algorithms and evaluations. Neural Netw. 125, 258–280 (2020)

    Article  Google Scholar 

  6. Shrestha, S.B., Orchard, G.: Slayer: Spike layer error reassignment in time. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  7. Lee, C., Sarwar, S.S., Panda, P., Srinivasan, G., Roy, K.: Enabling spike-based backpropagation for training deep neural network architectures. Front. Neurosci., 119 (2020)

    Google Scholar 

  8. Yan, Z., Zhou, J., Wong, W.-F.: Energy efficient ECG classification with spiking neural network. Biomed. Signal Process. Control 63, 102170 (2021)

    Article  Google Scholar 

  9. Xiping, J., Fang, B., Yan, R., Xiaoliang, X., Tang, H.: An FPGA implementation of deep spiking neural networks for low-power and fast classification. Neural Comput. 32(1), 182–204 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sun, B., Feng, H., Chen, K., Zhu, X.: A deep learning framework of quantized compressed sensing for wireless neural recording. IEEE Access 4, 5169–5178 (2016). https://doi.org/10.1109/ACCESS.2016.2604397

    Article  Google Scholar 

  11. Leone, G., Raffo, L., Meloni, P.: ZyON: enabling spike sorting on APSoC-based signal processors for high-density microelectrode arrays. IEEE Access 8, 218145–218160 (2020). https://doi.org/10.1109/ACCESS.2020.3042034

    Article  Google Scholar 

  12. Milekovic, T., Truccolo, W., Grün, S., Riehle, A., Brochier, T.: Local field potentials in primate motor cortex encode grasp kinetic parameters. Neuroimage 114, 338–355 (2015)

    Article  Google Scholar 

  13. Tagliabue, M., et al.: Estimation of two-digit grip type and grip force level by frequency decoding of motor cortex activity for a BMI application. In: 2015 International Conference on Advanced Robotics (ICAR), pp. 308–315. IEEE (2015)

    Google Scholar 

  14. Khorasani, A., Heydari Beni, N., Shalchyan, V., Daliri, M.R.: Continuous force decoding from local field potentials of the primary motor cortex in freely moving rats. Sci. Rep. 6(1), 1–10 (2016)

    Article  Google Scholar 

  15. Ahmadi, N., Constandinou, T.G., Bouganis, C.S.: Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning. J. Neural Eng. 18(2), 026011 (2021)

    Article  Google Scholar 

  16. Yang, S.-H., Huang, J.-W., Huang, C.-J., Chiu, P.-H., Lai, H.-Y., Chen, Y.-Y.: Selection of essential neural activity timesteps for intracortical brain-computer interface based on recurrent neural network. Sensors 21(19), 6372 (2021)

    Article  Google Scholar 

  17. Leone, G., Raffo, L., Meloni, P.: On-FPGA spiking neural networks for end-to-end neural decoding. IEEE Access 11, 41387–41399 (2023). https://doi.org/10.1109/ACCESS.2023.3269598

    Article  Google Scholar 

  18. Ma, X., Zheng, W., Peng, Z., Yang, J.: FPGA-based rapid electroencephalography signal classification system. In: 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT), pp. 223–227. IEEE (2019)

    Google Scholar 

  19. Agrawal, M., Vidyashankar, S., Huang, K.: On-chip implementation of ECoG signal data decoding in brain-computer interface. In: 2016 IEEE 21st International Mixed-Signal Testing Workshop (IMSTW), pp. 1–6. IEEE (2016)

    Google Scholar 

  20. McCrimmon, C.M., et al.: Performance assessment of a custom, portable, and low-cost brain-computer interface platform. IEEE Trans. Biomed. Eng. 64(10), 2313–2320 (2017)

    Article  Google Scholar 

  21. Du, Y., Jin, J., Wang, Q., Fan, J.: EMG-based continuous motion decoding of upper limb with spiking neural network. In: 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–5. IEEE (2022)

    Google Scholar 

  22. Liao, J., et al.: An energy-efficient spiking neural network for finger velocity decoding for implantable brain-machine interface. In: 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 134–137. IEEE (2022)

    Google Scholar 

  23. Leone, G., Raffo, L., Meloni, P.: A bandwidth-efficient emulator of biologically-relevant spiking neural networks on FPGA. IEEE Access 10, 76780–76793 (2022). https://doi.org/10.1109/ACCESS.2022.3192826

    Article  Google Scholar 

  24. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc. IEEE 102(5), 652–665 (2014)

    Article  Google Scholar 

  25. Brochier, T., et al.: Massively parallel recordings in macaque motor cortex during an instructed delayed reach-to-grasp task. Sci. Data 5(1), 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  26. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Leone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leone, G., Martis, L., Raffo, L., Meloni, P. (2023). On-FPGA Spiking Neural Networks for Multi-variable End-to-End Neural Decoding. In: Palumbo, F., Keramidas, G., Voros, N., Diniz, P.C. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2023. Lecture Notes in Computer Science, vol 14251. Springer, Cham. https://doi.org/10.1007/978-3-031-42921-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42921-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42920-0

  • Online ISBN: 978-3-031-42921-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics