Skip to main content

Evaluating the Robustness of ML Models to Out-of-Distribution Data Through Similarity Analysis

  • Conference paper
  • First Online:
New Trends in Database and Information Systems (ADBIS 2023)

Abstract

In Machine Learning systems, several factors impact the performance of a trained model. The most important ones include model architecture, the amount of training time, the dataset size and diversity. We present a method for analyzing datasets from a use-case scenario perspective, detecting and quantifying out-of-distribution (OOD) data on dataset level.

Our main contribution is the novel use of similarity metrics for the evaluation of the robustness of a model by introducing relative Fréchet Inception Distance (FID) and relative Kernel Inception Distance (KID) measures. These relative measures are relative to a baseline in-distribution dataset and are used to estimate how the model will perform on OOD data (i.e. estimate the model accuracy drop). We find a correlation between our proposed relative FID/relative KID measure and the drop in Average Precision (AP) accuracy on unseen data.

This work was partially funded by Sweden’s Innovation Agency and the Swedish Foundation for Strategic Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. arXiv preprint arXiv:1801.01401 (2018)

  2. Cluzeau, J.M., et al.: Concepts of design assurance for neural networks (CODANN). Public Rep. Extract Version 1, 1–104 (2020)

    Google Scholar 

  3. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Scenic: a language for scenario specification and scene generation. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 63–78 (2019)

    Google Scholar 

  4. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2016)

    Google Scholar 

  5. Guillory, D., Shankar, V., Ebrahimi, S., Darrell, T., Schmidt, L.: Predicting with confidence on unseen distributions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1134–1144 (2021)

    Google Scholar 

  6. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  7. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin, T., et al.: Microsoft COCO: common objects in context. CoRR abs/1405.0312 (2014). http://arxiv.org/abs/1405.0312

  9. Lindén, J., et al.: Curating datasets for visual runway detection. In: 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), pp. 1–9. IEEE (2021)

    Google Scholar 

  10. Masana, M., Ruiz, I., Serrat, J., van de Weijer, J., Lopez, A.M.: Metric learning for novelty and anomaly detection. arXiv preprint arXiv:1808.05492 (2018)

  11. Schäfer, M., Strohmeier, M., Lenders, V., Martinovic, I., Wilhelm, M.: Bringing up OpenSky: a large-scale ADS-B sensor network for research. In: IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, pp. 83–94. IEEE (2014)

    Google Scholar 

  12. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)

    Google Scholar 

  13. Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep nearest neighbors. In: International Conference on Machine Learning, pp. 20827–20840. PMLR (2022)

    Google Scholar 

  14. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  15. Techapanurak, E., Suganuma, M., Okatani, T.: Hyperparameter-free out-of-distribution detection using softmax of scaled cosine similarity. arXiv preprint arXiv:1905.10628 (2019)

  16. Theis, L., Oord, A.v.d., Bethge, M.: A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844 (2015)

  17. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  18. Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detectionasurvey. arXiv preprint arXiv:2110.11334 (2021)

  19. Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M., Lee, B.: A survey of modern deep learning based object detection models. Digit. Signal Process. 126, 103514 (2022)

    Article  Google Scholar 

  20. Zilly, J., Zilly, H., Richter, O., Wattenhofer, R., Censi, A., Frazzoli, E.: The Frechet distance of training and test distribution predicts the generalization gap (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the HERO group at Mälardalen University for constructive discussions and feedback, especially from Seyedhamidreza Mousavi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joakim Lindén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lindén, J., Forsberg, H., Daneshtalab, M., Söderquist, I. (2023). Evaluating the Robustness of ML Models to Out-of-Distribution Data Through Similarity Analysis. In: Abelló, A., et al. New Trends in Database and Information Systems. ADBIS 2023. Communications in Computer and Information Science, vol 1850. Springer, Cham. https://doi.org/10.1007/978-3-031-42941-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42941-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42940-8

  • Online ISBN: 978-3-031-42941-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics