Skip to main content

Multiplex Temporal Networks for Rapid Mental Workload Classification

  • Conference paper
  • First Online:
Brain Informatics (BI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13974))

Included in the following conference series:

  • 522 Accesses

Abstract

The automated classification of a participant’s mental workload based on electroencephalographic (EEG) data is a challenging problem. Recently, network-based approaches have been introduced for this purpose. We seek to build on this work by introducing a novel feature extraction method for mental workload classification which uses multiplex networks formed from visibility graphs (VGs). The VG algorithm is an effective method for transforming a time series into a complex network representation. To analyze multivariate EEG time series, we construct multiplex temporal networks (MTNs), structures which contain the VGs of multiple EEG channels. We examine the tendency of layers in an MTN to share the same edges, referred to as layer entanglement. Using layer entanglement metrics as inputs, a support vector machine (SVM) classifier achieved an average 97% accuracy, 0.07 loss, and 99% F1 score in discrimination between two levels of cognitive workload based on EEG data. The findings presented here extend the findings from other recent studies that examined the prediction of mental workload. This work suggests that multiplex networks and layer entanglement can provide potential metrics for assessing mental workload with application to passive brain-computer interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kriegeskorte, N., Douglas, P.: Cognitive computational neuroscience. Nat. Neurosci. 21(9), 1148–1160 (2018)

    Article  Google Scholar 

  2. Sylvester, J., Reggia, J., Weems, S., Bunting, M.: Controlling working memory with learned instructions. Neural Netw. 41, 23–38 (2013)

    Article  Google Scholar 

  3. Hauge, T., Katz, G., Davis, G., Huang, D., Reggia, J., Gentili, R.: High-level motor planning assessment during performance of complex action sequences in humans and a humanoid robot. Int. J. Soc. Robot. 13(5), 981–998 (2021)

    Article  Google Scholar 

  4. Gaskins, C., et al.: Mental workload assessment during simulated upper extremity prosthetic performance. Arch. Phys. Med. Rehabil. 99(10), e33 (2018)

    Article  Google Scholar 

  5. Edmonds, M., et al.: A tale of two explanations: enhancing human trust by explaining robot behavior. Sci. Robot. 4(37), eaay4663 (2019)

    Google Scholar 

  6. Aricò, P., et al.: Adaptive automation triggered by EEG-based mental workload index: a passive brain-computer interface application in realistic air traffic control environment. Front. Hum. Neurosci. 10, 539 (2016)

    Article  Google Scholar 

  7. Teymourlouei, A., Gentili, R., Reggia, J.: Decoding EEG signals with visibility graphs to predict varying levels of mental workload. In: 57th Annual Conference on Information Sciences and Systems, IEEE (2023)

    Google Scholar 

  8. Zander, T., et al.: Evaluation of a dry EEG system for application of passive brain-computer interfaces in autonomous driving. Front. Hum. Neurosci. 11, 78 (2017)

    Article  Google Scholar 

  9. Shaw, E., et al.: Cerebral cortical networking for mental workload assessment under various demands during dual-task walking. Exp. Brain Res. 237, 2279–2295 (2019)

    Article  Google Scholar 

  10. Makarov, V., et al.: Betweenness centrality in multiplex brain network during mental task evaluation. Phys. Rev. E 98(6), 062413 (2018)

    Article  MathSciNet  Google Scholar 

  11. Shih, J., Krusienski, D., Wolpaw, J.: Brain-computer interfaces in medicine. Mayo Clin. Proc. 87(3), 268–279 (2012)

    Article  Google Scholar 

  12. Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89(3), 032804 (2014)

    Article  Google Scholar 

  13. Lim, W., Sourina, O., Wang, L.: STEW: Simultaneous task EEG workload data set. IEEE Trans. Neural Syst. Rehabil. Eng. 26(11), 2106–2114 (2018)

    Article  Google Scholar 

  14. Zhu, G., Li, Y., Wen, P.: Analysing epileptic EEGs with a visibility graph algorithm. In: International Conference on Biomedical Engineering and Informatics, pp. 432–436 (2012)

    Google Scholar 

  15. Zhu, G., Li, Y., Wen, P., Wang, S.: Analysis of alcoholic EEG signals based on horizontal visibility graph entropy. Brain Inform. 1(1), 19–25 (2014)

    Article  Google Scholar 

  16. Zhu, G., Zong, F., Zhang, H., Wei, B., Liu, F.: Cognitive load during multitasking can be accurately assessed based on single channel electroencephalography using graph methods. IEEE Access 9, 33102–33109 (2021)

    Article  Google Scholar 

  17. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. 105(13), 4972–4975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Škrlj, B., Renoust, B.: Layer entanglement in multiplex, temporal multiplex, and coupled multilayer networks. Appl. Netw. Sci. 5(1), 1–34 (2020)

    Article  Google Scholar 

  19. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Hunter, J.: Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(03), 90–95 (2007)

    Article  Google Scholar 

  21. Waskom, M.: Seaborn: Statistical data visualization. J. Open Source Softw. 6(60), 3021 (2021)

    Article  Google Scholar 

  22. De la Torre, G.: Cognitive neuroscience in space. Life 4(3), 281–294 (2014)

    Article  Google Scholar 

  23. Mhatre, S., et al.: Neuro-consequences of the spaceflight environment. Neurosci. Biobehav. Rev. 132, 908–935 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Maryland Space Grant Consortium and the University of Maryland College of Computer, Mathematical, and Natural Sciences Alumni Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arya Teymourlouei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teymourlouei, A., Stone, J., Gentili, R., Reggia, J. (2023). Multiplex Temporal Networks for Rapid Mental Workload Classification. In: Liu, F., Zhang, Y., Kuai, H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43075-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43074-9

  • Online ISBN: 978-3-031-43075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics