Skip to main content

Social and Non-social Reward Learning Contexts for Detection of Major Depressive Disorder Using EEG: A Machine Learning Approach

  • Conference paper
  • First Online:
Brain Informatics (BI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13974))

Included in the following conference series:

  • 925 Accesses

Abstract

Major Depressive Disorder (MDD) is a leading cause of disability globally and a major cause of suicide deaths. Improving our understanding of MDD is expected to inspire better objective diagnostic and treatment tools which may decrease the burden of disease worldwide. MDD is associated with social impairments and reward processing aberrations. However, the interaction between social cognition and reward learning in MDD is not well understood. In this work, we aim to study the effect of integrating social information with reward learning in MDD using an EEG-based machine learning approach. We recorded EEG data from subjects during their participation in a reward learning experiment in social and non-social contexts. We then extracted linear and nonlinear features from the EEG data to detect MDD using Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) classifiers. Our results show that the data collected during social contexts achieved broadly higher classification accuracies compared to non-social contexts reaching 80% using multi-channels. Moreover, single-channel data achieved comparable and even better accuracies than multi-channels with also superior performance in social contexts reaching 85.7%. In the sub-band classification analysis, beta and alpha bands were considerably better than theta and delta bands. Surprisingly, the non-social context had the highest accuracy in the beta band while the social context had the highest accuracy in the alpha band. The results were consistent when using single features compared to combining the features. These findings show the notable role of social information with reward processing in advancing our understanding of MDD and its subtypes which can guide the improvement of diagnostic and personalized treatment tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablin, P., Cardoso, J.F., Gramfort, A.: Faster independent component analysis by preconditioning with hessian approximations. IEEE Trans. Signal Process. 66(15), 4040–4049 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aboy, M., Hornero, R., Abásolo, D., Álvarez, D.: Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans. Biomed. Eng. 53(11), 2282–2288 (2006)

    Article  Google Scholar 

  3. Acharya, U.R., et al.: A novel depression diagnosis index using nonlinear features in EEG signals. Eur. Neurol. 74(1–2), 79–83 (2015)

    Article  Google Scholar 

  4. de Aguiar Neto, F.S., Rosa, J.L.G.: Depression biomarkers using non-invasive EEG: a review. Neurosci. Biobehav. Rev. 105, 83–93 (2019)

    Article  Google Scholar 

  5. Akar, S.A., Kara, S., Agambayev, S., Bilgiç, V.: Nonlinear analysis of EEG in major depression with fractal dimensions. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7410–7413. IEEE (2015)

    Google Scholar 

  6. Alkan, A., Kiymik, M.K.: Comparison of AR and Welch methods in epileptic seizure detection. J. Med. Syst. 30(6), 413–419 (2006)

    Article  Google Scholar 

  7. Bachmann, M., et al.: Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput. Methods Programs Biomed. 155, 11–17 (2018)

    Article  Google Scholar 

  8. Bains, N., Abdijadid, S.: Major Depressive Disorder. StatPearls Publishing (2022)

    Google Scholar 

  9. Bashir, N., Narejo, S., Ismail, F., Anjum, M.R., Prasad, R.: A machine learning framework for major depressive disorder (MDD) detection using non-invasive EEG signals (2022)

    Google Scholar 

  10. Bornas, X., et al.: Complexity and irregularity in the brain oscillations of depressive patients: a systematic review. Neuropsychiatry 7(5), 466–477 (2017)

    Google Scholar 

  11. Dev, A., et al.: Exploration of EEG-based depression biomarkers identification techniques and their applications: a systematic review. IEEE Access 10, 16756–16781 (2022)

    Article  Google Scholar 

  12. Frey, A.L., Frank, M.J., McCabe, C.: Social reinforcement learning as a predictor of real-life experiences in individuals with high and low depressive symptomatology. Psychol. Med. 51(3), 408–415 (2021)

    Article  Google Scholar 

  13. Frey, A.L., McCabe, C.: Impaired social learning predicts reduced real-life motivation in individuals with depression: a computational fMRI study. J. Affect. Disord. 263, 698–706 (2020)

    Article  Google Scholar 

  14. Glazer, J.E., Kelley, N.J., Pornpattananangkul, N., Mittal, V.A., Nusslock, R.: Beyond the FRN: broadening the time-course of EEG and ERP components implicated in reward processing. Int. J. Psychophysiol. 132, 184–202 (2018)

    Article  Google Scholar 

  15. Greco, C., Matarazzo, O., Cordasco, G., Vinciarelli, A., Callejas, Z., Esposito, A.: Discriminative power of EEG-based biomarkers in major depressive disorder: a systematic review. IEEE Access 9, 112850–112870 (2021)

    Article  Google Scholar 

  16. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Physica D 31(2), 277–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hosseinifard, B., Moradi, M.H., Rostami, R.: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from eeg signal. Comput. Methods Programs Biomed. 109(3), 339–345 (2013)

    Article  Google Scholar 

  18. Katz, M.J.: Fractals and the analysis of waveforms. Comput. Biol. Med. 18(3), 145–156 (1988)

    Article  Google Scholar 

  19. Keren, H., et al.: Reward processing in depression: a conceptual and meta-analytic review across fMRI and EEG studies. Am. J. Psychiatry 175(11), 1111–1120 (2018)

    Article  Google Scholar 

  20. Kupferberg, A., Bicks, L., Hasler, G.: Social functioning in major depressive disorder. Neurosci. Biobehav. Rev. 69, 313–332 (2016)

    Article  Google Scholar 

  21. Ludwig, K.A., Miriani, R.M., Langhals, N.B., Joseph, M.D., Anderson, D.J., Kipke, D.R.: Using a common average reference to improve cortical neuron recordings from microelectrode arrays. J. Neurophysiol. 101(3), 1679–1689 (2009)

    Article  Google Scholar 

  22. Mackin, D.M., Nelson, B.D., Klein, D.N.: Reward processing and depression: current findings and future directions. Neurosci. Depression 425–433 (2021)

    Google Scholar 

  23. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdisc. J. Nonlinear Sci. 5(1), 82–87 (1995)

    Article  Google Scholar 

  24. Puri, D., Nalbalwar, S., Nandgaonkar, A., Wagh, A.: EEG-based diagnosis of Alzheimer’s disease using Kolmogorov complexity. In: Iyer, B., Ghosh, D., Balas, V.E. (eds.) Applied Information Processing Systems. AISC, vol. 1354, pp. 157–165. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2008-9_15

    Chapter  Google Scholar 

  25. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circulatory Physiol. 278, H2039–H2049 (2000)

    Article  Google Scholar 

  26. Safra, L., Chevallier, C., Palminteri, S.: Depressive symptoms are associated with blunted reward learning in social contexts. PLoS Comput. Biol. 15(7), e1007224 (2019)

    Article  Google Scholar 

  27. Sanchez-Poblador, V., Monte-Moreno, E., Solé-Casals, J.: ICA as a preprocessing technique for classification. In: Puntonet, C.G., Prieto, A. (eds.) ICA 2004. LNCS, vol. 3195, pp. 1165–1172. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30110-3_147

    Chapter  Google Scholar 

  28. Schinkel, S., Dimigen, O., Marwan, N.: Selection of recurrence threshold for signal detection. Eur. Phys. J. Spec. Top. 164(1), 45–53 (2008)

    Article  Google Scholar 

  29. Shen, J., Zhao, S., Yao, Y., Wang, Y., Feng, L.: A novel depression detection method based on pervasive EEG and EEG splitting criterion. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1879–1886. IEEE (2017)

    Google Scholar 

  30. Strawbridge, R., Young, A.H., Cleare, A.J.: Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatric Dis. Treatment (2017)

    Google Scholar 

  31. Sun, S., Chen, H., Shao, X., Liu, L., Li, X., Hu, B.: EEG based depression recognition by combining functional brain network and traditional biomarkers. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2074–2081. IEEE (2020)

    Google Scholar 

  32. Tibdewal, M.N., Mahadevappa, M., Ray, A.K., Malokar, M., Dey, H.R.: Power line and ocular artifact denoising from EEG using notch filter and wavelet transform. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1654–1659. IEEE (2016)

    Google Scholar 

  33. Čukić, M., López, V., Pavón, J.: Classification of depression through resting-state electroencephalogram as a novel practice in psychiatry. J. Med. Internet Res. 22(11), e19548 (2020)

    Article  Google Scholar 

  34. Watts, D., Pulice, R.F., Reilly, J., Brunoni, A.R., Kapczinski, F., Passos, I.C.: Predicting treatment response using EEG in major depressive disorder: a machine-learning meta-analysis. Transl. Psychiatry 12(1), 332 (2022)

    Article  Google Scholar 

  35. WHO: Depression and other common mental disorders: global health estimates. Technical report, World Health Organization (2017)

    Google Scholar 

  36. Wu, C.T., et al.: Resting-state EEG signal for major depressive disorder detection: a systematic validation on a large and diverse dataset. Biosensors 11(12), 499 (2021)

    Article  Google Scholar 

  37. Zhu, L., et al.: EEG-based approach for recognizing human social emotion perception. Adv. Eng. Inform. 46, 101191 (2020)

    Article  Google Scholar 

  38. Zigmond, A.S., Snaith, R.P.: The hospital anxiety and depression scale. Acta Psychiatr. Scand. 67(6), 361–370 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seif Eldawlatly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghattas, P., Gamal, M., Eldawlatly, S. (2023). Social and Non-social Reward Learning Contexts for Detection of Major Depressive Disorder Using EEG: A Machine Learning Approach. In: Liu, F., Zhang, Y., Kuai, H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43075-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43074-9

  • Online ISBN: 978-3-031-43075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics