Skip to main content

Offline Substitution Machine Learning Model for the Prediction of Fitness of GA-ARM

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14135))

Included in the following conference series:

Abstract

Association rule mining (ARM) is one of the most popular tasks in the field of data mining, very useful for decision-making. It is an NP-hard problem for which Genetic algorithms have been widely used. This is due to the obtained competitive results. However, their main drawback is the fitness computation which is time-consuming, especially when working with huge data. To overcome this problem, we propose an offline approach in which we substitute the GA’s fitness computation with a Machine Learning model. The latter will predict the quality of the different generated solutions during the search process. The performed tests on several well-known datasets of different sizes show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://colab.research.google.com/.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets.php.

  3. 3.

    http://www.almaden.ibm.com/cs/quest/syndata.html.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  2. Guo, D., Chai, T., Ding, J., Jin, Y.: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)

    Google Scholar 

  3. Hamdad, L., Benatchba, K., Bendjoudi, A., Ournani, Z.: Impact of genetic algorithms operators on association rules extraction. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 747–759. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_62

    Chapter  Google Scholar 

  4. Huang, P., Wang, H., Ma, W.: Stochastic ranking for offline data-driven evolutionary optimization using radial basis function networks with multiple kernels. In: IEEE Symposium Series on Computational Intelligence (SSCI). IEEE (2019)

    Google Scholar 

  5. Huang, P., Wang, H., Jin, Y.: Offline data-driven evolutionary optimization based on tri-training. Swarm Evol. Comput. 60, 100800 (2021)

    Article  Google Scholar 

  6. Kabir, M.M.J., Xu, S., Kang, B.H., Zhao, Z.: A new evolutionary algorithm for extracting a reduced set of interesting association rules. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 133–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26535-3_16

    Chapter  Google Scholar 

  7. Li, J.-Y., Zhan, Z.-H., Wang, H., Zhang, J.: Data-driven evolutionary algorithm with perturbation-based ensemble surrogates. IEEE Trans. Cybern. 51(8), 3925–3937 (2020)

    Article  Google Scholar 

  8. Li, J.-Y., et al.: Boosting data-driven evolutionary algorithm with localized data generation. IEEE Trans. Evol. Comput. 24(5), 923–937 (2020)

    Article  Google Scholar 

  9. Mata, J., Alvarez, J.L., Riquelme, J.C.: Mining numeric association rules with genetic algorithms. In: Kůrková, V., Neruda, R., Kárný, M., Steele, N.C. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 264–267. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-6230-9_65

    Chapter  Google Scholar 

  10. Talbi, E.G.: Machine learning into metaheuristics: a survey and taxonomy. ACM Comput. Surv. (CSUR) 54(6), 1–32 (2021)

    Article  Google Scholar 

  11. Wakabi-Waiswa, P.P., Baryamureeba, V.: Extraction of interesting association rules using genetic algorithms. Int. J. Comput. ICT Res. 2(1), 26–33 (2008)

    Google Scholar 

  12. Wang, H., Jin, Y., Doherty, J.: Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems. IEEE Trans. Cybern. 47(9), 2664–2677 (2017)

    Article  PubMed  Google Scholar 

  13. Wang, H., et al.: Offline data-driven evolutionary optimization using selective surrogate ensembles. IEEE Trans. Evol. Comput. 23(2), 203–216 (2018)

    Article  Google Scholar 

  14. Yu, M., Li, X., Liang, J.: A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization. Struc. Multidis. Optim. 61, 711–729 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Hamdad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamdad, L., Laoufi, C., Amirat, R., Benatchba, K., Sadeg, S. (2023). Offline Substitution Machine Learning Model for the Prediction of Fitness of GA-ARM. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43078-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43077-0

  • Online ISBN: 978-3-031-43078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics