Skip to main content

Low-Dimensional Space Modeling-Based Differential Evolution: A Scalability Perspective on bbob-largescale suite

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14134))

Included in the following conference series:

  • 468 Accesses

Abstract

Scalability is a challenge for Large Scale Optimization Problems (LSGO). Improving the scalability of efficient Differential Evolution algorithms (DE) has been a research focus due to their successful application to high-dimensional problems. Recently, a DE-based algorithm called LSMDE (Low-dimensional Space Modeling-based Differential Evolution) has shown promising results in solving LSGO problems on the CEC’2013 large-scale global optimization suite. LSMDE uses dimensionality reduction to generate an alternative search space and Gaussian mixture models to deal with the information loss caused by uncertainty from space transformation. This paper aims to extend the initial research through the scalability analysis of the LSMDE’s performance compared with its main competitors, SHADE-ILS and GL-SHADE, on bbob-largescale suite functions. The results show that although all competing algorithms perform worse as dimensionality increases, LSMDE outperforms the competition and is robust to dimensionality expansion in search spaces with diverse characteristics, achieving a target hit rate between \(40\%\) and \(80\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagattini, F., Schoen, F., Tigli, L.: Clustering methods for the optimization of atomic cluster structure. J. Chem. Phys. 148(14), 144102 (2018)

    Article  Google Scholar 

  2. Bagattini, F., Schoen, F., Tigli, L.: Clustering methods for large scale geometrical global optimization. Optim. Methods Softw. 34(5), 1099–1122 (2019)

    Article  MathSciNet  Google Scholar 

  3. Baş, E., Ülker, E.: Improved social spider algorithm for large scale optimization. Artif. Intell. Rev. 54(5), 3539–3574 (2021)

    Article  Google Scholar 

  4. Blei, D.M., Jordan, M.I.: Variational inference for Dirichlet process mixtures. Bayesian Anal. 1(1), 121–143 (2006)

    Article  MathSciNet  Google Scholar 

  5. Brockhoff, D., Auger, A., Hansen, N., Tušar, T.: Using well-understood single-objective functions in multiobjective black-box optimization test suites. Evol. Comput. 30(2), 165–193 (2022)

    Article  Google Scholar 

  6. Chen, M., Du, W., Song, W., Liang, C., Tang, Y.: An improved weighted optimization approach for large-scale global optimization. Complex Intell. Syst. 8(2), 1259–1280 (2022)

    Article  Google Scholar 

  7. Dasgupta, S.: Learning mixtures of gaussians. In: 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pp. 634–644. IEEE (1999)

    Google Scholar 

  8. Dasgupta, S., Gupta, A.: An elementary proof of the johnson-lindenstrauss lemma. International Computer Science Institute, Technical Report 22(1), pp. 1–5 (1999)

    Google Scholar 

  9. De Falco, I., Della Cioppa, A., Trunfio, G.A.: Investigating surrogate-assisted cooperative coevolution for large-scale global optimization. Inf. Sci. 482, 1–26 (2019)

    Article  Google Scholar 

  10. Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. The annals of statistics, pp. 793–815 (1984)

    Google Scholar 

  11. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: presentation of the noiseless functions. Technical report, Citeseer (2010)

    Google Scholar 

  12. Fonseca, T.H.L., Nassar, S.M., de Oliveira, A.C.M., Agard, B.: Low-dimensional space modeling-based differential evolution for large scale global optimization problems. IEEE Trans. Evol. Comput. (2022)

    Google Scholar 

  13. Iorio, A.W., Li, X.: Improving the performance and scalability of differential evolution. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 131–140. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89694-4_14

    Chapter  Google Scholar 

  14. Kabán, A., Bootkrajang, J., Durrant, R.J.: Towards large scale continuous EDA: a random matrix theory perspective. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 383–390 (2013)

    Google Scholar 

  15. Kishore Kumar, N., Schneider, J.: Literature survey on low rank approximation of matrices. Linear Multilinear Algebra 65(11), 2212–2244 (2017)

    Article  MathSciNet  Google Scholar 

  16. Li, L., Fang, W., Mei, Y., Wang, Q.: Cooperative coevolution for large-scale global optimization based on fuzzy decomposition. Soft. Comput. 25(5), 3593–3608 (2021)

    Article  Google Scholar 

  17. Li, X., Tang, K., Omidvar, M.N., Yang, Z., Qin, K., China, H.: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization. Gene 7(33), 8 (2013)

    Google Scholar 

  18. Long, W., Wu, T., Liang, X., Xu, S.: Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst. Appl. 123, 108–126 (2019)

    Article  Google Scholar 

  19. Ma, Y., Bai, Y.: A multi-population differential evolution with best-random mutation strategy for large-scale global optimization. Appl. Intell. 50(5), 1510–1526 (2020)

    Article  Google Scholar 

  20. Mahdavi, S., Rahnamayan, S., Deb, K.: Partial opposition-based learning using current best candidate solution. In: IEEE Symposium Series on Computational Intelligence, pp. 1–7 (2016)

    Google Scholar 

  21. Maučec, M.S., Brest, J.: A review of the recent use of differential evolution for large-scale global optimization: an analysis of selected algorithms on the cec 2013 lsgo benchmark suite. Swarm Evol. Comput. 50, 100428 (2019)

    Article  Google Scholar 

  22. Molina, D., LaTorre, A., Herrera, F.: Shade with iterative local search for large-scale global optimization. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2018)

    Google Scholar 

  23. Morales, J.L., Nocedal, J.: Remark on “algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound constrained optimization’’. ACM Trans. Math. Softw. (TOMS) 38(1), 1–4 (2011)

    Article  Google Scholar 

  24. Omidvar, M.N., Li, X.: Evolutionary large-scale global optimization: an introduction. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 807–827 (2017)

    Google Scholar 

  25. Omidvar, M.N., Li, X., Yao, X.: A review of population-based metaheuristics for large-scale black-box global optimization: Part b. IEEE Trans. Evol. Comput., 1 (2021). https://doi.org/10.1109/TEVC.2021.3130835

  26. Pacheco-Del-Moral, O., Coello, C.A.C.: A shade-based algorithm for large scale global optimization. In: International Conference on Parallel Problem Solving from Nature, pp. 650–663. Springer (2020)

    Google Scholar 

  27. Segredo, E., Paechter, B., Segura, C., González-Vila, C.I.: On the comparison of initialisation strategies in differential evolution for large scale optimisation. Optim. Lett. 12(1), 221–234 (2018)

    Article  MathSciNet  Google Scholar 

  28. Tabernik, D., Skočaj, D.: Deep learning for large-scale traffic-sign detection and recognition. IEEE Trans. Intell. Transp. Syst. 21(4), 1427–1440 (2019)

    Article  Google Scholar 

  29. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78. IEEE (2013)

    Google Scholar 

  30. Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimization. In: IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 3052–3059 (2008)

    Google Scholar 

  31. Varelas, K., et al.: Benchmarking large-scale continuous optimizers: the BBOB-largescale testbed, a coco software guide and beyond. Appl. Soft Comput. 97, 106737 (2020)

    Article  Google Scholar 

  32. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: Qana: quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 104, 104314 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This research was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by a research grant from Science Foundation Ireland (SFI) under grant no. SFI/16/RC/3918 (CONFIRM) and Marie Sklodowska-Curie grant agreement no. 847.577 co-funded by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Henrique Lemos Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fonseca, T.H.L., Nassar, S.M., de Oliveira, A.C.M., Agard, B. (2023). Low-Dimensional Space Modeling-Based Differential Evolution: A Scalability Perspective on bbob-largescale suite. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14134. Springer, Cham. https://doi.org/10.1007/978-3-031-43085-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43085-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43084-8

  • Online ISBN: 978-3-031-43085-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics