Skip to main content

A Scalable Binary Neural Associative Memory on FPGA

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Abstract

The human brain and its ability to associate is one of the most fascinating things in nature. The long-known concept of binary neural associative memory offers the possibility to build a very simple hardware architecture, that allows direct association. In a BINAM the presented input is associated with the stored content of the memory, without the need for addressing. Hereby the BINAM is a fault-tolerant concept, which allows that erroneous input vectors will usually result in a correct output. In this work, we propose a modern hardware architecture of a BINAM on the VCU1525 FPGA board. We implemented the architecture in VHDL as a scalable, modular, generic, and easy to use design. For the evaluation designs in the range of 8,000 to 740,000 neurons, with equal input and output vector size, have been generated and tested on the FPGA board. Currently, a maximum clock frequency of \(\sim \)200 MHz with a resource utilization of only \(\sim \)33% CLBs\(, \sim \)22% LUTs, and \(\sim \)10% registers can be achieved. Maximum times for the storage and association process for all designs are stated in this paper.

M. Kortekamp and S. Pilz—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azevedo, F.A., et al.: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comparat. Neurol. 513(5), 532–541 (2009)

    Article  Google Scholar 

  2. Drachman, D.A.: Do we have brain to spare? (2005)

    Google Scholar 

  3. Hebb, D.O.: The organization of behavior: a neuropsychological theory. Psychology Press (2005)

    Google Scholar 

  4. Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009)

    Google Scholar 

  5. Kaufman, S.B., DeYoung, C.G., Gray, J.R., Brown, J., Mackintosh, N.: Associative learning predicts intelligence above and beyond working memory and processing speed. Intelligence 37(4), 374–382 (2009)

    Article  Google Scholar 

  6. Kohonen, T.: Content-addressable memories. 1st Edn. Springer Berlin, Heidelberg (1980). https://doi.org/10.1007/978-3-642-96552-4

  7. Kohonen, T.: Self-organization and associative memory, vol. 8. 3rd Edn. Springer Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-88163-3

  8. Neisser, U., et al.: Intelligence: knowns and unknowns. Am. Psychol. 51(2), 77 (1996)

    Article  Google Scholar 

  9. Palm, G.: On associative memory. Biol. Cybern. 36, 19–31 (1980). https://doi.org/10.1002/andp.19053221004

    Article  MathSciNet  Google Scholar 

  10. Palm, G.: Assoziatives gedächtnis und gehirntheorie. Spektrum der Wissenschaft 6, 54–64 (1988)

    Google Scholar 

  11. Palm, G.: On the asymptotic information storage capacity of neural networks. In: Eckmiller, R., van der Malsburg, C. (eds.) Neural Computers. Springer Study Edition, vol. 41, pp. 271–280. Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-83740-1_29

  12. Palm, G.: Neural assemblies. 1st Edn. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-81792-2

  13. Palm, G., Sommer, F.T.: Associative data storage and retrieval in neural networks. Models of Neural Networks III: Association, Generalization, and Representation, pp. 79–118 (1996)

    Google Scholar 

  14. Palm, G.: Neural associative memories and sparse coding. Neural Netw. 37, 165–171 (2013). https://doi.org/10.1016/j.neunet.2012.08.013. https://www.sciencedirect.com/science/article/pii/S0893608012002298. Twenty-fifth Anniversay Commemorative Issue

  15. Pilz, S., Hellweg, T., Harteis, C., Rückert, U., Schneider, M.: who will own our global digital twin: the power of genetic and biographic information to shape our lives. In: Gräßler, I., Maier, G.W., Steffen, E., Roesmann, D. (eds.) The Digital Twin of Humans, pp. 11–35. Springer, Cham(2023). https://doi.org/10.1007/978-3-031-26104-6_2

  16. Rückert, U., Funke, A., Pintaske, C.: Acceleratorboard for neural associative memories. Neurocomputing 5(1), 39–49 (1993)

    Article  Google Scholar 

  17. Rückert, U., Kleerbaum, C., Goser, K.: Digital VLSI implementations of an associative memory based on neural networks. In: Delgado-Frias, J.G., Moore, W.R. (eds.) VLSI for Artificial Intelligence and Neural Networks, pp. 275–284 . Springer, Boston, MA (1991). https://doi.org/10.1007/978-1-4615-3752-6_27

  18. Rückert, U., Rüping, S., Naroska, E.: Parallel implementation of neural associative memories on RISC processors. In: Delgado-Frias, J.G., Moore, W.R. (eds.) VLSI for Neural Networks and Artificial Intelligence, pp. 167–176. Springer, Boston, MA (1994). https://doi.org/10.1007/978-1-4899-1331-9_17

  19. Rückert, U., Surmann, H.: Tolerance of a binary associative memory towards stuck-at-faults. In: Artificial Neural Networks, pp. 1195–1198. Elsevier (1991)

    Google Scholar 

  20. XILINX: VCU1525 reconfigurable acceleration platform - UG1268 (v1.5) (2019). https://docs.xilinx.com/v/u/en-US/ug1268-vcu1525-reconfig-accel-platform. Accessed 14 May 2022

  21. Zuse, K.: Der plankalkül (1972)

    Google Scholar 

Download references

Acknowledgments

This publication incorporates results from the VEDLIoT project, which received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 957197. Also, Sarah Pilz and Ulrich Rückert were members of the research programme ‘Design of Flexible Work Environments-Human-Centric Use of Cyber-Physical Systems in Industry 4.0’, which is supported by the North-Rhine-Westphalian funding scheme ‘Forschungskolleg’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Pilz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kortekamp, M., Pilz, S., Hagemeyer, J., Rückert, U. (2023). A Scalable Binary Neural Associative Memory on FPGA. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14134. Springer, Cham. https://doi.org/10.1007/978-3-031-43085-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43085-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43084-8

  • Online ISBN: 978-3-031-43085-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics