Skip to main content

Energy-Aware KNN for EEG Classification: A Case Study in Heterogeneous Platforms

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Abstract

The growing energy consumption caused by IT is forcing application developers to consider energy efficiency as one of the fundamental design parameters. This parameter acquires great relevance in HPC systems when running artificial neural networks and Machine Learning applications. Thus, this article shows an example of how to estimate and consider energy consumption in a real case of EEG classification. An efficient and distributed implementation of the KNN algorithm that uses mRMR as a feature selection technique to reduce the dimensionality of the dataset is proposed. The performance of three different workload distributions is analyzed to identify which one is more suitable according to the experimental conditions. The proposed approach outperforms the classification results obtained by previous works. It achieves an accuracy rate of 88.8% and a speedup of 74.53 when running on a multi-node heterogeneous cluster, consuming only 13.38% of the energy of the sequential version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbari, H., Ghofrani, S., Zakalvand, P., Tariq Sadiq, M.: Schizophrenia recognition based on the phase space dynamic of EEG signals and graphical features. Biomed. Signal Process. Control 69, 102917 (2021). https://doi.org/10.1016/j.bspc.2021.102917

    Article  Google Scholar 

  2. Aquino-Brítez, D., et al.: Optimization of deep architectures for EEG signal classification: an autoML approach using evolutionary algorithms. Sensors 21(6), 2096 (2021). https://doi.org/10.3390/s21062096

    Article  Google Scholar 

  3. Asensio-Cubero, J., Gan, J.Q., Palaniappan, R.: Multiresolution analysis over simple graphs for brain computer interfaces. J. Neural Eng. 10(4), 21–26 (2013). https://doi.org/10.1088/1741-2560/10/4/046014

    Article  Google Scholar 

  4. Choubey, H., Pandey, A.: A combination of statistical parameters for the detection of epilepsy and EEG classification using ANN and KNN classifier. SIViP 15(3), 475–483 (2020). https://doi.org/10.1007/s11760-020-01767-4

    Article  Google Scholar 

  5. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. In: Computer Society Bioinformatics Conference, CSB 2003, pp. 523–528. IEEE, Stanford, CA, USA, August 2003. https://doi.org/10.1109/CSB.2003.1227396

  6. Ding, F., Wienke, S., Zhang, R.: Dynamic MPI parallel task scheduling based on a master-worker pattern in cloud computing. Int. J. Auton. Adapt. Commun. Syst. 8(4), 424–438 (2015). https://doi.org/10.1504/IJAACS.2015.073191

    Article  Google Scholar 

  7. Dong, Y., Chen, J., Yang, X., Deng, L., Zhang, X.: Energy-oriented openMP parallel loop scheduling. In: 6th International Symposium on Parallel and Distributed Processing with Applications, ISPA 2008, pp. 162–169. IEEE, Sydney, NSW, Australia, December 2008. https://doi.org/10.1109/ISPA.2008.68

  8. Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., Friday, A.: The climate impact of ICT: a review of estimates, trends and regulations. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.02622

  9. González, J., Ortega, J., Escobar, J.J., Damas, M.: A lexicographic cooperative co-evolutionary approach for feature selection. Neurocomputing 463, 59–76 (2021). https://doi.org/10.1016/j.neucom.2021.08.003

    Article  Google Scholar 

  10. Gvozdetska, N., Globa, L., Prokopets, V.: Energy-efficient backfill-based scheduling approach for SLURM resource manager. In: 15th International Conference on the Experience of Designing and Application of CAD Systems, CADSM 2019, pp. 1–5. IEEE, Polyana, Ukraine, February 2019. https://doi.org/10.1109/CADSM.2019.8779312

  11. Ibrahim, S., Djemal, R., Alsuwailem, A.: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybernetics Biomed. Eng. 38(1), 16–26 (2018). https://doi.org/10.1016/j.bbe.2017.08.006

    Article  Google Scholar 

  12. Jo, I., Lee, S., Oh, S.: Improved measures of redundancy and relevance for mRMR feature selection. Computers 8(2), 42 (2019). https://doi.org/10.3390/computers8020042

    Article  Google Scholar 

  13. León, J., et al.: Deep learning for EEG-based motor imagery classification: accuracy-cost trade-off. PLoS ONE 15(6), e0234178 (2020). https://doi.org/10.1371/journal.pone.0234178

    Article  Google Scholar 

  14. Li, M., Xu, H., Liu, X., Lu, S.: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technol. Health Care 26(S1), 509–519 (2018). https://doi.org/10.3233/THC-174836

    Article  Google Scholar 

  15. Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991). https://doi.org/10.1109/34.75512

    Article  Google Scholar 

  16. Sabancı, K., Koklu, M.: The classification of eye state by using kNN and MLP classification models according to the EEG signals. Int. J. Intell. Syst. Appl. Eng. 3(4), 127–130 (2015). https://doi.org/10.18201/ijisae.75836

  17. Saeedi, M., Saeedi, A., Maghsoudi, A.: Major depressive disorder assessment via enhanced K-nearest neighbor method and EEG signals. Phys. Eng. Sci. Med. 43(3), 1007–1018 (2020). https://doi.org/10.1007/s13246-020-00897-w

    Article  Google Scholar 

  18. Sharma, H., Sharma, K.: An algorithm for sleep apnea detection from single-lead ECG using Hermite basis functions. Comput. Biol. Med. 77, 116–124 (2016). https://doi.org/10.1016/j.compbiomed.2016.08.012

    Article  Google Scholar 

  19. Zainuddin, A.Z.A., Mansor, W., Khuan, L.Y., Mahmoodin, Z.: Classification of EEG signal from capable dyslexic and normal children using KNN. Adv. Sci. Lett. 24(2), 1402–1405 (2018). https://doi.org/10.1166/asl.2018.10758

    Article  Google Scholar 

Download references

Acknowledgements

Work funded by the Spanish Ministry of Science, Innovation, and Universities under grants PGC2018-098813-B-C31, PID2022-137461NB-C32 and ERDF funds. Also, the authors would like to thank Dr. Alberto Prieto, from the Department of Computer Engineering, Automation, and Robotics of the University of Granada, Spain, for his valuable collaboration in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Escobar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escobar, J.J. et al. (2023). Energy-Aware KNN for EEG Classification: A Case Study in Heterogeneous Platforms. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14134. Springer, Cham. https://doi.org/10.1007/978-3-031-43085-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43085-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43084-8

  • Online ISBN: 978-3-031-43085-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics