Skip to main content

Development of a Robot for Agricultural Field Scouting

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2023)

Abstract

Since agricultural environments are mostly in unstructured feature information, in order to facilitate agricultural robots to better adapt to environmental change problems in agricultural environments, this paper proposes a robot system architecture for agricultural fields scouting. The article proposes: 1) the analysis of some existing field agricultural robots; 2) a novel approach that first constructs a map using the Rtabmap SLAM technique and second employs a particle filter-based Monte Carlo method to estimate the robot's position post-hoc with a loopback detection process; 3) the pipeline of robot works (which is developing), including its architecture, taking into account selected hardware and software components. Firstly, the hardware architecture of the robot and its required sensors are considered, then the AMCL route planning algorithm is applied. The depth camera+lidar+RTK approach is used for the robot's map construction, the simulation model of robot route planning by ROS, the robot design by SolidWorks, and finally the required sensors and hardware structure parts are analyzed and summarized. Based on the considered project, it is planned to create a field agricultural scouting robot, which will become part of the implementation of a digital twin in crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, J., et al.: Development and evaluation of a pneumatic finger-like end-effector for cherry tomato harvesting robot in greenhouse. Comput. Electron. Agric. 197, 106879 (2022)

    Article  Google Scholar 

  2. Wakchaure, M., Patle, B.K., Mahindrakar, A.K.: Application of AI techniques and robotics in agriculture: a review. Artif. Intell. Sci. 3, 100057 (2023)

    Google Scholar 

  3. Yamasaki, Y., Morie, M., Noguchi, N.: Development of a high-accuracy autonomous sensing system for a field scouting robot. Comput. Electron. Agric. 193, 106630 (2022)

    Article  Google Scholar 

  4. Schmitz, A., Badgujar, C., Mansur, H., Flippo, D., McCornack, B., Sharda, A.: Design of a reconfigurable crop scouting vehicle for row crop navigation: a proof-of-concept study. Sensors 22, 6203 (2022)

    Article  Google Scholar 

  5. Pradel, M., de Fays, M., Seguineau, C.: Comparative life cycle assessment of intra-row and inter-row weeding practices using autonomous robot systems in French vineyards. Sci. Total Environ. 838(3), 156441 (2022)

    Article  Google Scholar 

  6. Manish, R., Lin, Y.C., Ravi, R., Hasheminasab, S.M., Zhou, T., Habib, A.: Development of a miniaturized mobile mapping system for in-row, under-canopy phenotyping. Remot. Sens. 13(2), 276 (2021)

    Article  Google Scholar 

  7. Longo, D., Pennisi, A., Bonsignore, R., Muscato, G., Schillaci, G.: A multifunctional tracked vehicle able to operate in vineyards using GPS and laser range-finder technology. In: International Conference Ragusa SHWA2010-September 16–18 2010 Ragusa Ibla Campus-Italy “Work safety and risk prevention in agro-food and forest systems (2010)

    Google Scholar 

  8. Ge, Y., Xiong, Y., Tenorio, G.L., From, P.J.: Fruit localization and environment perception for strawberry harvesting robots. IEEE Access 7, 147642–147652 (2019)

    Article  Google Scholar 

  9. Bengochea-Guevara, J.M., Conesa-Muñoz, J., Andújar, D., et al.: Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot. Sensors 16(3), 276 (2016)

    Article  Google Scholar 

  10. Pak, J., Kim, J., Park, Y., et al.: Field evaluation of path-planning algorithms for autonomous mobile robot in smart farms. IEEE Access 10, 60253–60266 (2022)

    Article  Google Scholar 

  11. Pierzchała, M., Giguère, P., Astrup, R.: Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Comput. Electron. Agric. 145, 217–225 (2018)

    Article  Google Scholar 

  12. Labbé, M., Michaud, F.: RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 35, 416–446 (2019)

    Article  Google Scholar 

  13. Silva, B.M.F.D., Xavier, R.S., Gonçalves, L.M.G.: Mapping and Navigation for Indoor Robots under ROS: An Experimental Analysis. Preprints.org. 2019070035 (2019)

    Google Scholar 

  14. Al-Turjman, F.: A novel approach for drones positioning in mission critical applications. Transactions on Emerging Telecommunications Technologies 33(1), e3603 (2022)

    Article  Google Scholar 

  15. Bouazizi, M., Mora, A.L., Ohtsuki, T.: A 2D-Lidar-equipped unmanned robot-based approach for indoor human activity detection. Sensors 23(5), 2534 (2023)

    Article  Google Scholar 

  16. Baek, S., Lee, T.-K., Se-Young, O., Ju, K.: Integrated on-line localization, mapping and coverage algorithm of unknown environments for robotic vacuum cleaners based on minimal sensing. Adv. Robot. 25, 16511673 (2011)

    Article  Google Scholar 

  17. Mochurad, L., Hladun, Y., Tkachenko, R.: An obstacle-finding approach for autonomous mobile robots using 2D LiDAR data. Big Data Cogn. Comput. 7, 43 (2023)

    Article  Google Scholar 

  18. Dyck, G., Hawley, E., Hildebrand, K., Paliwal, J.: Digital Twins: a novel traceability concept for post-harvest handling. Smart Agr. Technol. 3, 100079 (2023)

    Google Scholar 

  19. Purcell, W., Neubauer, T.: Digital twins in agriculture: a state-of-the-art review. Smart Agr. Technol. 3, 100094 (2023)

    Google Scholar 

  20. Mitrofanova, O., Yakushev, V., Zakharova, E., Terleev, V.: An alternative approach to managing the nitrogen content of cereal crops. Smart Innov. Syst. Technol. 247, 481–491 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Mitrofanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitrofanova, O., Blekanov, I., Sevostyanov, D., Zhang, J., Mitrofanov, E. (2023). Development of a Robot for Agricultural Field Scouting. In: Ronzhin, A., Sadigov, A., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2023. Lecture Notes in Computer Science(), vol 14214. Springer, Cham. https://doi.org/10.1007/978-3-031-43111-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43111-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43110-4

  • Online ISBN: 978-3-031-43111-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics