Skip to main content

Reliability of Robot’s Controller Software

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2023)

Abstract

The reliability of robots’ digital control systems, based on Von Neumann type computer platform is investigated. An approach is proposed for assessing the reliability of a robot control program, based on the analysis of software as a model of a computational process unfolding in real physical time. It is shown that in systems of suchlike class the importance of software in ensuring the reliability of robot operation as a whole increases significantly. It is determined that software failure potential is being laid to the control program at its designing stage due to neglect of such digital controllers properties, as time delays when data processing. The model of control program failures emerging, caused by time factor, is worked out. For delays between transactions estimation the semi-Markov model of poling procedure is used, that permit to estimate probabilities of exceeding data skew, pure lag, and sampling period the threshold, beyond which the control system failure takes place. Using a stochastic matrix, describing poling procedure, probability of failure, caused by transactions order disturbances is estimated. Probabilities and sampling period obtained are used for simulation of failure flow generator, describing reliability of control program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  2. Mehmszow, U.: Mobile Robotics: A Practical Introduction. Springer, London (2003)

    Google Scholar 

  3. Kamaldar, M., Mahjoob, M.J., Yazdi, M.H., Vahid-Alizadeh, H., Ahmadizadeh, S: A control synthesis for reducing lateral oscillations of a spherical robot. In: IEEE International Conference on Mechatronics, pp. 546–551 (2011)

    Google Scholar 

  4. Landau, I.D., Zito, G.: Digital Control Systems. Design. Identification and Implementation. Springer, London (2006)

    Google Scholar 

  5. Aström, J., Wittenmark, B.: Computer Controlled Systems: Theory and Design. Tsinghua University Press, Beijing (2002)

    Google Scholar 

  6. Larkin, E.V., Nguyen, V.S., Privalov, A.N.: Simulation of digital control systems by nonlinear objects. In: Dang, N.H.T., Zhang, YD., Tavares, J.M.R.S., Chen, BH. (eds.) Artificial Intelligence in Data and Big Data Processing. ICABDE 2021. Lecture Notes on Data Engineering and Communications Technologies, vol. 124, pp. 711–721. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97610-1_56

  7. Fadali, M.S., Visioli, A.: Digital Control Engineering: Analysis and Design. Academic Press, Cambridge (2012)

    Google Scholar 

  8. Dubrova, E.: Fault-Tolerant Design. Springer, New York (2013)

    Book  MATH  Google Scholar 

  9. Sánchez-Silva, M., Klutke, G.-A.: Reliability and Life-Cycle Analysis of Deteriorating Systems. Springer, Switzerland (2016)

    Book  Google Scholar 

  10. O'Conner, P., Kleyner, A.: Practical Reliability Engineering. Willey, Hoboken (2012)

    Google Scholar 

  11. Koren, I., Krishna, M.: Fault Tolerant Systems. Morgan Kaufmann Publishers, San Francisco, CA (2007)

    MATH  Google Scholar 

  12. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)

    Article  Google Scholar 

  13. Howard R.A.: Dynamic Probabilistic Systems. VOL. 1 Markov Models, Vol. 2 Semi-Markov and Decision Processes. Courier Corporation (2012)

    Google Scholar 

  14. Janssen, J., Manca, R.: Applied Semi-Markov processes. Springer, Cham (2006)

    Google Scholar 

  15. Pospíšil, M.: Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via Z-transform. Appl. Math. Comput. 294, 180–194 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Sanz, R., García, P., Fridman, E., Albertos, P.: Robust predictive extended state observer for a class of nonlinear systems with time-varying input delay. Int. J. Control 93(2), 217–225 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, M., He, Y., She, J.H., Liu, G.P.: Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40(8), 1435–1439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, X.M., Wu, M., He, Y.: Delay dependent robust control for linear systems with multiple time-varying delays and uncertainties. Control Decision 19, 496–500 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Wu, R., Fan, D., Iu, H.H.C., Fernando, T.: Adaptive fuzzy dynamic surface control for uncertain discrete-time non-linear pure-feedback mimo systems with network-induced time-delay based on state observer. Int. J. Control 92(7), 1707–1719 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hayes, M.H.: Statistical digital signal processing and modeling. Willey, Hoboken (2009)

    Google Scholar 

  21. Yeh, Y.C., Chu, Y., Chiou, C.W.: Improving the sampling resolution of periodic signals by using controlled sampling interval method. Comput. Electr. Eng. 40(4), 1064–1071 (2014)

    Article  Google Scholar 

  22. Meyer-Baese, U.: Digital Signal Processing. Springer, Heidelbrg (2004)

    MATH  Google Scholar 

  23. Larkin, E.V., Bogomolov, A.V., Privalov, A.N.: A method for estimating the time intervals between transactions in speech-compression algorithms. Automatic Documentation Math. Linguist. 51, 214–219 (2017)

    Article  Google Scholar 

  24. Pavlov, A.V.: About the equality of the transform of Laplace to the transform of Fourier. Issues Anal. 23, 21–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J., Farquharson, C.G., Hu, X.: Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses. Geophysics 81(2), E113–E128 (2016)

    Article  Google Scholar 

  26. Schiff, J.L.: The Laplace transform: Theory and Applications. Springer, New York (1991)

    Google Scholar 

  27. Kobayashi, H., Mark, B.L., Turin, W.: Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  28. Petersen, P.: Linear Algebra. Springer, New York (2012)

    Book  MATH  Google Scholar 

  29. Cherney, D., Denton, T., Thomas, R., Waldron, A.: Linear Algebra. Davis, California (2013)

    Google Scholar 

  30. Grigelionis, B.: On the convergence of sums of random step processes to a Poisson process. Theory Probab. Appl. 8(2), 177–182 (1963)

    Article  MATH  Google Scholar 

  31. Lu, H., Pang, G., Mandjes, M.: A functional central limit theorem for Markov additive arrival processes and its applications to queuing systems. Queuing Syst. 84(3), 381–406 (2016)

    Article  MATH  Google Scholar 

  32. Larkin, E., Bogomolov, A., Gorbachev, D., Privalov, A.: About approach of the transactions flow to Poisson one in robot control systems. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 113–122. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66471-2_13

    Chapter  Google Scholar 

  33. Larkin, E., Privalov, A., Bogomolov, A., Akimenko, T.: Model of digital control system by complex multi-loop objects. In: AIP Conference Proceedings, vol. 2700, no. 1. AIP Publishing (2023)

    Google Scholar 

Download references

Acknowledgments

The research was carried out within the grant № 22–26-00808 of Russian Scientific Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Akimenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larkin, E., Akimenko, T., Bogomolov, A., Sharov, V. (2023). Reliability of Robot’s Controller Software. In: Ronzhin, A., Sadigov, A., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2023. Lecture Notes in Computer Science(), vol 14214. Springer, Cham. https://doi.org/10.1007/978-3-031-43111-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43111-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43110-4

  • Online ISBN: 978-3-031-43111-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics