Abstract
Efficient face image retrieval, i.e. searching for existing photographs of a person in unlabelled photo collections using a query photo, is evaluated for a novel method to find the top n results for Consensus Ranking. The approach aims to maximise precision and recall by using the retrieved photos, all ranked on similarity. The proposed method aims to retrieve all photos of the queried person while excluding images of other individuals. To achieve this, the method uses the top n results as temporary queries, recalculates similarities, and combines the obtained ranked lists to produce a better overall ranking. The method includes a novel and reliable procedure for selecting n, which is evaluated on two datasets, and considers the impact of age variation in the datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beitzel, S.M., Jensen, E.C., Frieder, O.: Map. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1691–1692. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9_492
Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 35, 99–110 (1943)
Chen, T., et al.: Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. CoRR abs/1512.01274 (2015). http://arxiv.org/abs/1512.01274
Choy, C.B., Gwak, J.Y., Savarese, S., Chandraker, M.: Universal correspondence network. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, pp. 2414–2422. Curran Associates Inc., Red Hook (2016)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
Duchenne, O., Bach, F., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2383–2395 (2011). https://doi.org/10.1109/TPAMI.2011.110
Gupta, A., Pawade, P., Balakrishnan, R.: Deep residual network and transfer learning-based person re-identification. Intell. Syst. Appl. 16, 200137 (2022). https://doi.org/10.1016/j.iswa.2022.200137. https://www.sciencedirect.com/science/article/pii/S2667305322000746
Hast, A.: Simple filter design for first and second order derivatives by a double filtering approach. Pattern Recogn. Lett. 42, 65–71 (2014). https://doi.org/10.1016/j.patrec.2014.01.014. https://www.sciencedirect.com/science/article/pii/S0167865514000282
Hast, A.: Consensus ranking for increasing mean average precision in keyword spotting. In: Amelio, A., Borgefors, G., Hast, A. (eds.) Proceedings of 2nd International Workshop on Visual Pattern Extraction and Recognition for Cultural Heritage Understanding co-located with 16th Italian Research Conference on Digital Libraries (IRCDL 2020), Bari, Italy, 29 January 2020, CEUR Workshop Proceedings, vol. 2602, pp. 46–57. CEUR-WS.org (2020). https://ceur-ws.org/Vol-2602/paper4.pdf
InsightFace: Insightface (2023). https://insightface.ai. Accessed 30 Feb 2023
Jang, Y.K., Jeong, D., Lee, S.H., Cho, N.I.: Deep clustering and block hashing network for face image retrieval. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 325–339. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_21
Lin, J., Li, Z., Tang, J.: Discriminative deep hashing for scalable face image retrieval. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-2017, pp. 2266–2272 (2017). https://doi.org/10.24963/ijcai.2017/315
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6738–6746. IEEE Computer Society, Los Alamitos (2017). https://doi.org/10.1109/CVPR.2017.713
Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: Agedb: the first manually collected, in-the-wild age database. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1997–2005 (2017). https://doi.org/10.1109/CVPRW.2017.250
Opitz, J., Burst, S.: Macro f1 and macro f1 (2021)
Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Xie, X., Jones, M.W., Tam, G.K.L. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 41.1–41.12. BMVA Press (2015). https://doi.org/10.5244/C.29.41
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Curran Associates Inc., Red Hook (2019)
Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015). https://doi.org/10.1109/CVPR.2015.7298682
Serengil, S.I., Ozpinar, A.: Lightface: a hybrid deep face recognition framework. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 23–27. IEEE (2020). https://doi.org/10.1109/ASYU50717.2020.9259802
Serengil, S.I., Ozpinar, A.: Hyperextended lightface: a facial attribute analysis framework. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–4. IEEE (2021). https://doi.org/10.1109/ICEET53442.2021.9659697
Serengil, S.I., Ozpinar, A.: An evaluation of sql and nosql databases for facial recognition pipelines (2023). https://www.cambridge.org/engage/coe/article-details/63f3e5541d2d184063d4f569. https://doi.org/10.33774/coe-2023-18rcn, preprint
Shi, Y., Jain, A.K.: Boosting unconstrained face recognition with auxiliary unlabeled data. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2789–2798. IEEE Computer Society, Los Alamitos (2021). https://doi.org/10.1109/CVPRW53098.2021.00314
Shi, Y., Jain, A.: Probabilistic face embeddings. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6901–6910 (2019). https://doi.org/10.1109/ICCV.2019.00700
Tang, J., Li, Z., Zhu, X.: Supervised deep hashing for scalable face image retrieval. Pattern Recogn. 75(C), 25–32 (2018). https://doi.org/10.1016/j.patcog.2017.03.028
Tang, J., Lin, J., Li, Z., Yang, J.: Discriminative deep quantization hashing for face image retrieval. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6154–6162 (2018). https://doi.org/10.1109/TNNLS.2018.2816743
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991). https://doi.org/10.1162/jocn.1991.3.1.71
Viola, P., Jones, M.: Robust real-time face detection. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 747–747 (2001). https://doi.org/10.1109/ICCV.2001.937709
Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018). https://doi.org/10.1109/CVPR.2018.00552
Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31
Yang, M.H., Kriegman, D., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002). https://doi.org/10.1109/34.982883
Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch (2014). https://doi.org/10.48550/ARXIV.1411.7923. https://arxiv.org/abs/1411.7923
Zaeemzadeh, A., et al.: Face image retrieval with attribute manipulation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12096–12105 (2021). https://doi.org/10.1109/ICCV48922.2021.01190
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016). https://doi.org/10.1109/LSP.2016.2603342
Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning deep representation for face alignment with auxiliary attributes. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 918–930 (2016). https://doi.org/10.1109/TPAMI.2015.2469286
Acknowledgments
This work has been partially supported by the Swedish Research Council (Dnr 2020-04652; Dnr 2022-02056) in the projects The City’s Faces. Visual culture and social structure in Stockholm 1880–1930 and The International Centre for Evidence-Based Criminal Law (EB-CRIME).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hast, A. (2023). Consensus Ranking for Efficient Face Image Retrieval: A Novel Method for Maximising Precision and Recall. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-43148-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43147-0
Online ISBN: 978-3-031-43148-7
eBook Packages: Computer ScienceComputer Science (R0)