Skip to main content

UAV Multi-object Tracking by Combining Two Deep Neural Architectures

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

Detecting and tracking multiple objects from unmanned aerial vehicle (UAV) videos is an high challenging task in a wide range of practical applications. Almost all traditional trackers meet some issues on UAV images due to camera movements causing view change in a 3D directions. In this work, we propose a Convolutional Neural Network specialized in multi-object tracking (MOT) for images captured from UAV. The architecture we introduced is composed by two main blocks: i) an object detection block based on YOLOv8 architecture; ii) an association block based on strongSORT architecture. We investigated different versions of YOLOv8 architectures with the strongSORT as association trackers. Experimental results on the VisDrone2019 dataset show that the proposed solution outperforms the up to date state-of-the-art tracking algorithms performance on UAV videos reaching the 42.03% in Multi-Object Tracking Accuracy (MOTA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azimi, S.M., Kraus, M., Bahmanyar, R., Reinartz, P.: Multiple pedestrians and vehicles tracking in aerial imagery using a convolutional neural network. Remote. Sens. 13, 1953 (2021)

    Article  Google Scholar 

  2. Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without using image information. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

    Google Scholar 

  3. Braso, G., Leal-Taixe, L.: Learning a neural solver for multiple object tracking. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6246–6256 (2020)

    Google Scholar 

  4. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  5. Chen, L., Ai, H., Zhuang, Z., Shang, C.: Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)

    Google Scholar 

  6. Du, Y., et al.: StrongSORT: make DeepSORT great again. IEEE Trans. Multimedia (2023)

    Google Scholar 

  7. Glenn, J., Ayush, C., Jing, Q.: YOLO by ultralytics (2023). https://github.com/ultralytics/ultralytics, software

  8. Huang, C., Wu, B., Nevatia, R.: Robust object tracking by hierarchical association of detection responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_58

    Chapter  Google Scholar 

  9. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2462–2470 (2017)

    Google Scholar 

  10. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759. IEEE (2010)

    Google Scholar 

  11. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: DetNet: design backbone for object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 339–354. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_21

    Chapter  Google Scholar 

  12. Liang, Y., Zhou, Y.: LSTM multiple object tracker combining multiple cues. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2351–2355. IEEE (2018)

    Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  14. Liu, S., Li, X., Lu, H., He, Y.: Multi-object tracking meets moving UAV. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8876–8885 (2022)

    Google Scholar 

  15. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  16. Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: TrackFormer: multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022)

    Google Scholar 

  17. Milan, A., Rezatofighi, S.H., Dick, A., Reid, I., Schindler, K.: Online multi-target tracking using recurrent neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  18. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR 2011, pp. 1201–1208. IEEE (2011)

    Google Scholar 

  19. Sadeghian, A., Alahi, A., Savarese, S.: Tracking the untrackable: learning to track multiple cues with long-term dependencies. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 300–311 (2017)

    Google Scholar 

  20. Solawetz, J.: What is YOLOv8? The ultimate guide. https://blog.roboflow.com/whats-new-in-yolov8/

  21. Sun, S., Akhtar, N., Song, H., Mian, A., Shah, M.: Deep affinity network for multiple object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 104–119 (2019)

    Google Scholar 

  22. Tang, Z., et al.: CityFlow: a city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8789–8798 (2019)

    Google Scholar 

  23. ultralytics: Ultralytics YOLOv8: the state-of-the-art YOLO model. https://ultralytics.com/yolov8

  24. Varga, L.A., Kiefer, B., Messmer, M., Zell, A.: SeaDronesSee: a maritime benchmark for detecting humans in open water. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3686–3696 (2021)

    Google Scholar 

  25. Wang, G., Wang, Y., Zhang, H., Gu, R., Hwang, J.N.: Exploit the connectivity: multi-object tracking with TrackletNet. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 482–490 (2019)

    Google Scholar 

  26. Wang, G., Yuan, X., Zheng, A., Hsu, H.M., Hwang, J.N.: Anomaly candidate identification and starting time estimation of vehicles from traffic videos. In: CVPR Workshops (2019)

    Google Scholar 

  27. Wang, G., Yuan, Y., Chen, X., Li, J., Zhou, X.: Learning discriminative features with multiple granularities for person re-identification. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 274–282 (2018)

    Google Scholar 

  28. Wang, Z., Zheng, L., Liu, Y., Li, Y., Wang, S.: Towards real-time multi-object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 107–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_7

    Chapter  Google Scholar 

  29. Wen, L., et al.: Detection, tracking, and counting meets drones in crowds: a benchmark. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7808–7817 (2021)

    Google Scholar 

  30. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649. IEEE (2017)

    Google Scholar 

  31. Wu, H., Nie, J., He, Z., Zhu, Z., Gao, M.: One-shot multiple object tracking in UAV videos using task-specific fine-grained features. Remote Sens. 14(16), 3853 (2022)

    Article  Google Scholar 

  32. Wu, X., Li, W., Hong, D., Tao, R., Du, Q.: Deep learning for unmanned aerial vehicle-based object detection and tracking: a survey. IEEE Geosci. Remote Sens. Mag. 10(1), 91–124 (2021)

    Article  Google Scholar 

  33. Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: MOTR: end-to-end multiple-object tracking with transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXVII, pp. 659–675. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_38

  34. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203–4212 (2018)

    Google Scholar 

  35. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 129, 3069–3087 (2021)

    Article  Google Scholar 

  36. Zheng, L., et al.: MARS: a video benchmark for large-scale person re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 868–884. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_52

    Chapter  Google Scholar 

  37. Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Omni-scale feature learning for person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3702–3712 (2019)

    Google Scholar 

  38. Zhu, P., et al.: Detection and tracking meet drones challenge. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7380–7399 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded in part by Future Artificial Intelligence Research-FAIR CUP B53C220036 30006 grant number PE0000013, and in part by the Ministry of Enterprises and Made in Italy with the grant ENDOR “ENabling technologies for Defence and mOnitoring of the foRests” - PON 2014-2020 FESR - CUP B82C21001750005. The authors would like to thank Mr. Arturo Argentieri from CNR-ISASI Italy for his technical contribution on the multi-GPU computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Luigi Mazzeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazzeo, P.L., Manica, A., Distante, C. (2023). UAV Multi-object Tracking by Combining Two Deep Neural Architectures. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43148-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43147-0

  • Online ISBN: 978-3-031-43148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics