Skip to main content

GCK-Maps: A Scene Unbiased Representation for Efficient Human Action Recognition

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14233))

Included in the following conference series:

Abstract

Human action recognition from visual data is a popular topic in Computer Vision, applied in a wide range of domains. State-of-the-art solutions often include deep-learning approaches based on RGB videos and pre-computed optical flow maps. Recently, 3D Gray-Code Kernels projections have been assessed as an alternative way of representing motion, being able to efficiently capture space-time structures. In this work, we investigate the use of GCK pooling maps, which we called GCK-Maps, as input for addressing Human Action Recognition with CNNs. We provide an experimental comparison with RGB and optical flow in terms of accuracy, efficiency, and scene-bias dependency. Our results show that GCK-Maps generally represent a valuable alternative to optical flow and RGB frames, with a significant reduction of the computational burden.

E. Nicora and V. P. Pastore—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dataset will be soon released.

  2. 2.

    Implementation available at http://people.csail.mit.edu/celiu/OpticalFlow/.

References

  1. Adadi, A.: A survey on data-efficient algorithms in big data era. Jour. Big Data 8(1) (2021)

    Google Scholar 

  2. Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vis. Appl. 23(2), 255–281 (2012)

    Article  Google Scholar 

  3. Asghari-Esfeden, S., Sznaier, M., Camps, O.: Dynamic motion representation for human action recognition. In: IEEE WACV, pp. 557–566 (2020)

    Google Scholar 

  4. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. IJCV 92, 1–31 (2011)

    Article  Google Scholar 

  5. Ben-Artzi, G., Hel-Or, H., Hel-Or, Y.: IEEE PAMI 29(3), 382–393 (2007)

    Article  Google Scholar 

  6. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: IEEE CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  7. Choi, J., Gao, C., Messou, J.C., Huang, J.B.: Why can’t i dance in the mall? learning to mitigate scene bias in action recognition. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE CVPR, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  9. Gehrig, D., Kuehne, H., Woerner, A., Schultz, T.: Hmm-based human motion recognition with optical flow data. In: IEEE-RAS Humanoids, pp. 425–430 (2009)

    Google Scholar 

  10. Girdhar, R., Ramanan, D.: Attentional pooling for action recognition. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  11. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. IEEE PAMI 29(12), 2247–2253 (2007)

    Article  Google Scholar 

  12. Grossi, G., Lanzarotti, R., Napoletano, P., Noceti, N., Odone, F.: Positive technology for elderly well-being: a review. PR Lett. 137, 61–70 (2020)

    Google Scholar 

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  14. Kong, Y., Fu, Y.: Human action recognition and prediction: a survey. IJCV 130(5), 1366–1401 (2022)

    Article  Google Scholar 

  15. Li, D., Yao, T., Duan, L., Mei, T., Rui, Y.: Unified spatio-temporal attention networks for action recognition in videos. IEEE Trans. Multimedia 21(2), 416–428 (2018)

    Article  Google Scholar 

  16. Li, Y., Li, Y., Vasconcelos, N.: RESOUND: towards action recognition without representation Bias. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 520–535. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_32

    Chapter  Google Scholar 

  17. Li, Z., Gavrilyuk, K., Gavves, E., Jain, M., Snoek, C.G.: Videolstm convolves, attends and flows for action recognition. In: CVIU, vol. 166, pp. 41-50 (2018)

    Google Scholar 

  18. Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE ICCV, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  19. Moro, M., et al.: A markerless pipeline to analyze spontaneous movements of preterm infants. Comput. Methods Programs Biomed. 226, 107119 (2022)

    Article  Google Scholar 

  20. Moshe, Y., Hel-Or, H.: Video block motion estimation based on gray-code kernels. IEEE TIP 18(10), 2243–2254 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Moshe, Y., Hel-Or, H., Hel-Or, Y.: Foreground detection using spatiotemporal projection kernels. In: IEEE CVPR, pp. 3210–3217 (2012)

    Google Scholar 

  22. Nicora, E., Goyal, G., Noceti, N., Vignolo, A., Sciutti, A., Odone, F.: The moca dataset, kinematic and multi-view visual streams of fine-grained cooking actions. Scientific Data 7(1), 1–15 (2020)

    Article  Google Scholar 

  23. Nicora, E., Noceti, N.: Exploring the use of efficient projection kernels for motion saliency estimation. In: ICIAP, pp. 158–169 (2022)

    Google Scholar 

  24. Nicora, E., Noceti, N.: On the use of efficient projection kernels for motion-based visual saliency estimation. Front. Comput. Sci. 4 (2022)

    Google Scholar 

  25. Noceti, N., Odone, F.: Learning common behaviors from large sets of unlabeled temporal series. ImaVis 30(11), 875–895 (2012)

    Google Scholar 

  26. Poppe, R.: A survey on vision-based human action recognition. ImaVis 28(6), 976–990 (2010)

    Google Scholar 

  27. Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A., Black, M.J.: On the integration of optical flow and action recognition. In: GCPR, pp. 281–297 (2019)

    Google Scholar 

  28. Shekokar, R.U., Kale, S.N.: Deep learning for human action recognition. In: 2021 6th International Conference for Convergence in Technology (I2CT), pp. 1–5 (2021)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  30. Sun, L., Jia, K., Chen, K., Yeung, D.Y., Shi, B.E., Savarese, S.: Lattice long short-term memory for human action recognition. In: IEEE ICCV, pp. 2147–2156 (2017)

    Google Scholar 

  31. Sun, Z., Ke, Q., Rahmani, H., Bennamoun, M., Wang, G., Liu, J.: Human action recognition from various data modalities: a review. In: IEEE PAMI, pp. 1–20 (2022)

    Google Scholar 

  32. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: IEEE ICCV, pp. 4489–4497 (2015)

    Google Scholar 

  33. Tu, Z., et al.: Multi-stream cnn: Learning representations based on human-related regions for action recognition. PR 79, 32–43 (2018)

    Google Scholar 

  34. Vignolo, A., Noceti, N., Rea, F., Sciutti, A., Odone, F., Sandini, G.: Detecting biological motion for human-robot interaction: a link between perception and action. Front. Robotics AI, 14 (2017)

    Google Scholar 

  35. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: IEEE ICCV, pp. 3551–3558 (2013)

    Google Scholar 

  36. Yao, R., Lin, G., Xia, S., Zhao, J., Zhou, Y.: Video object segmentation and tracking: A survey. ACM TIST 11(4), 1–47 (2020)

    Article  Google Scholar 

  37. Zhang, Z., Hu, Y., Chan, S., Chia, L.-T.: Motion context: a new representation for human action recognition. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 817–829. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_60

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been supported by AFOSR with the grant n. FA8655-20-1-7035. VPP was supported by FSE REACT-EU-PON 2014-2020, DM 1062/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Paolo Pastore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nicora, E., Pastore, V.P., Noceti, N. (2023). GCK-Maps: A Scene Unbiased Representation for Efficient Human Action Recognition. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43148-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43147-0

  • Online ISBN: 978-3-031-43148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics