Abstract
In this paper, we introduce a novel framework for the challenging problem of One-Shot Unsupervised Domain Adaptation (OS-UDA), which aims to adapt to a target domain with only a single unlabeled target sample. Unlike existing approaches that rely on large labeled source and unlabeled target data, our Target-Driven One-Shot UDA (TOS-UDA) approach employs a learnable augmentation strategy guided by the target sample’s style to align the source distribution with the target distribution. Our method consists of three modules: an augmentation module, a style alignment module, and a classifier. Unlike existing methods, our augmentation module allows for strong transformations of the source samples, and the style of the single target sample available is exploited to guide the augmentation by ensuring perceptual similarity. Furthermore, our approach integrates augmentation with style alignment, eliminating the need for separate pre-training on additional datasets. Our method outperforms or performs comparably to existing OS-UDA methods on the Digits and DomainNet benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benaim, S., Wolf, L.: One-shot unsupervised cross domain translation. In: Advances in Neural Information Processing Systems 31 (2018)
Chen, M., Zhao, S., Liu, H., Cai, D.: Adversarial-learned loss for domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3521–3528 (2020)
Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Gu, M., Vesal, S., Kosti, R., Maier, A.: Few-shot unsupervised domain adaptation for multi-modal cardiac image segmentation. In: Bildverarbeitung für die Medizin 2022. I, pp. 20–25. Springer, Wiesbaden (2022). https://doi.org/10.1007/978-3-658-36932-3_5
Hull, J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994). https://doi.org/10.1109/34.291440
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). https://yann.lecun.com/exdb/mnist/
Luo, Y., Liu, P., Guan, T., Yu, J., Yang, Y.: Adversarial style mining for one-shot unsupervised domain adaptation. In: Advances in Neural Information Processing Systems 33, pp. 20612–20623 (2020)
Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., Goodfellow, I.J., Pouget-Abadie, J.: Generative adversarial nets. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)
Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (October 2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Suzuki, T.: Teachaugment: Data augmentation optimization using teacher knowledge. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10904–10914 (June 2022)
Taylor, L., Nitschke, G.: Improving deep learning with generic data augmentation. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1542–1547. IEEE (2018)
Volpi, R., Morerio, P., Savarese, S., Murino, V.: Adversarial feature augmentation for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5495–5504 (2018)
Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6502–6509 (2020)
Xu, M., Yoon, S., Fuentes, A., Park, D.S.: A comprehensive survey of image augmentation techniques for deep learning. arXiv preprint arXiv:2205.01491 (2022)
Yang, W., Yang, C., Huang, S., Wang, L., Yang, M.: Few-shot unsupervised domain adaptation via meta learning. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2022). https://doi.org/10.1109/ICME52920.2022.9859804
Yue, X., et al.: Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13834–13844 (2021)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Carrazco, J.I.D., Kadam, S.K., Morerio, P., Bue, A.D., Murino, V. (2023). Target-Driven One-Shot Unsupervised Domain Adaptation. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-43148-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43147-0
Online ISBN: 978-3-031-43148-7
eBook Packages: Computer ScienceComputer Science (R0)