Skip to main content

Target-Driven One-Shot Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

In this paper, we introduce a novel framework for the challenging problem of One-Shot Unsupervised Domain Adaptation (OS-UDA), which aims to adapt to a target domain with only a single unlabeled target sample. Unlike existing approaches that rely on large labeled source and unlabeled target data, our Target-Driven One-Shot UDA (TOS-UDA) approach employs a learnable augmentation strategy guided by the target sample’s style to align the source distribution with the target distribution. Our method consists of three modules: an augmentation module, a style alignment module, and a classifier. Unlike existing methods, our augmentation module allows for strong transformations of the source samples, and the style of the single target sample available is exploited to guide the augmentation by ensuring perceptual similarity. Furthermore, our approach integrates augmentation with style alignment, eliminating the need for separate pre-training on additional datasets. Our method outperforms or performs comparably to existing OS-UDA methods on the Digits and DomainNet benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benaim, S., Wolf, L.: One-shot unsupervised cross domain translation. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  2. Chen, M., Zhao, S., Liu, H., Cai, D.: Adversarial-learned loss for domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3521–3528 (2020)

    Google Scholar 

  3. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  4. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  5. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  7. Gu, M., Vesal, S., Kosti, R., Maier, A.: Few-shot unsupervised domain adaptation for multi-modal cardiac image segmentation. In: Bildverarbeitung für die Medizin 2022. I, pp. 20–25. Springer, Wiesbaden (2022). https://doi.org/10.1007/978-3-658-36932-3_5

    Chapter  Google Scholar 

  8. Hull, J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994). https://doi.org/10.1109/34.291440

    Article  Google Scholar 

  9. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  10. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). https://yann.lecun.com/exdb/mnist/

  11. Luo, Y., Liu, P., Guan, T., Yu, J., Yang, Y.: Adversarial style mining for one-shot unsupervised domain adaptation. In: Advances in Neural Information Processing Systems 33, pp. 20612–20623 (2020)

    Google Scholar 

  12. Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., Goodfellow, I.J., Pouget-Abadie, J.: Generative adversarial nets. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  13. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  14. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)

    Google Scholar 

  15. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (October 2019)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Suzuki, T.: Teachaugment: Data augmentation optimization using teacher knowledge. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10904–10914 (June 2022)

    Google Scholar 

  18. Taylor, L., Nitschke, G.: Improving deep learning with generic data augmentation. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1542–1547. IEEE (2018)

    Google Scholar 

  19. Volpi, R., Morerio, P., Savarese, S., Murino, V.: Adversarial feature augmentation for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5495–5504 (2018)

    Google Scholar 

  20. Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6502–6509 (2020)

    Google Scholar 

  21. Xu, M., Yoon, S., Fuentes, A., Park, D.S.: A comprehensive survey of image augmentation techniques for deep learning. arXiv preprint arXiv:2205.01491 (2022)

  22. Yang, W., Yang, C., Huang, S., Wang, L., Yang, M.: Few-shot unsupervised domain adaptation via meta learning. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2022). https://doi.org/10.1109/ICME52920.2022.9859804

  23. Yue, X., et al.: Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13834–13844 (2021)

    Google Scholar 

  24. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Ivan Davila Carrazco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carrazco, J.I.D., Kadam, S.K., Morerio, P., Bue, A.D., Murino, V. (2023). Target-Driven One-Shot Unsupervised Domain Adaptation. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43148-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43147-0

  • Online ISBN: 978-3-031-43148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics