Skip to main content

Food Image Classification: The Benefit of In-Domain Transfer Learning

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14234))

Included in the following conference series:

  • 593 Accesses

Abstract

Monitoring food intake and calories may be fundamental for a healthy lifestyle and preventing nutrition-related illnesses. Recently, deep-learning approaches have been extensively exploited to provide an automatic analysis of food images. However, food image datasets have peculiar challenges, including fine granularity with a high intra-class and low inter-class variability. In this work, we focus on training strategies considering the typical scenario where data availability and computational resources are limited. Exploiting convolutional neural networks, we show that in-domain source datasets provide a better representation with respect to only using ImageNet, bringing a significant increase in test accuracy. We finally show that ensembling different CNN models further improves the learned representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.s. department of agriculture, agricultural research service (2022). usda food and nutrient database for dietary studies 2019–2020, food Surveys Research Group Home Page. http://www.ars.usda.gov/nea/bhnrc/fsrg

  2. Alfano, P.D., Pastore, V.P., Rosasco, L., Odone, F.: Fine-tuning or top-tuning? transfer learning with pretrained features and fast kernel methods (2022). arXiv:2209.07932

  3. Arslan, B., Memis, S., Battinisonmez, E., Batur, O.Z.: Fine-grained food classification methods on the UEC food-100 database. IEEE Transactions on Artificial Intelligence (2021)

    Google Scholar 

  4. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  5. Jing-jing Chen, C.w.N.: Deep-based ingredient recognition for cooking recipe retrival. ACM Multimedia (2016)

    Google Scholar 

  6. Ciocca, G., Napoletano, P., Schettini, R.: Learning CNN-based features for retrieval of food images. In: Battiato, S., Farinella, G.M., Leo, M., Gallo, G. (eds.) New Trends in Image Analysis and Processing - ICIAP 2017: ICIAP International Workshops, WBICV, SSPandBE, 3AS, RGBD, NIVAR, IWBAAS, and MADiMa 2017, Catania, Italy, September 11–15, 2017, Revised Selected Papers, pp. 426–434. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-70742-6_41

  7. Haussmann, S., et al.: Foodkg: a semantics-driven knowledge graph for food recommendation. In: The Semantic Web-ISWC 2019: 18th International Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019, Proceedings, Part II 18, pp. 146–162. Springer (2019)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Kaur, P., Sikka, K., Wang, W., Belongie, S., Divakaran, A.: Foodx-251: a dataset for fine-grained food classification. arXiv preprint arXiv:1907.06167 (2019)

  10. Kawano, Y., Yanai, K.: Automatic expansion of a food image dataset leveraging existing categories with domain adaptation. In: Proceedings of ECCV Workshop on Transferring and Adapting Source Knowledge in Computer Vision (TASK-CV) (2014)

    Google Scholar 

  11. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2661–2671 (2019)

    Google Scholar 

  12. Maracani, A., Pastore, V.P., Natale, L., Rosasco, L., Odone, F.: In-domain versus out-of-domain transfer learning in plankton image classification. Sci. Rep. 13(1), 10443 (2023)

    Article  Google Scholar 

  13. Marcel, S., Rodriguez, Y.: Torchvision the machine-vision package of torch. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1485–1488 (2010)

    Google Scholar 

  14. Marin, J., et al.: Recipe1m+: A Dataset for Learning Cross-modal Embeddings for Cooking Recipes and Food Images. IEEE Trans. Pattern Anal. Mach, Intell (2019)

    Google Scholar 

  15. Matsuda, Y., Hoashi, H., Yanai, K.: Recognition of multiple-food images by detecting candidate regions. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME) (2012)

    Google Scholar 

  16. Mayne, S.T., Playdon, M.C., Rock, C.L.: Diet, nutrition, and cancer: past, present and future. Nat. Rev. Clin. Oncol. 13(8), 504–515 (2016)

    Article  Google Scholar 

  17. Min, W., et al.: Large scale visual food recognition. IEEE Trans. Pattern Anal. Mach. Intell. 45(8), 9932–9949 (2023)

    Google Scholar 

  18. Ravasco, P.: Nutrition in cancer patients. J. Clin. Med. 8(8), 1211 (2019)

    Article  Google Scholar 

  19. Salvador, A., et al.: Learning cross-modal embeddings for cooking recipes and food images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  20. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  21. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  22. Tan, M., Le, Q.: Efficientnetv2: Smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106. PMLR (2021)

    Google Scholar 

Download references

Acknowledgements

VPP was supported by FSE REACT-EU-PON 2014–2020, DM 1062/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Paolo Pastore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Touijer, L., Pastore, V.P., Odone, F. (2023). Food Image Classification: The Benefit of In-Domain Transfer Learning. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics