Abstract
With the recent explosion of interest in visual Generative AI, the field of deepfake detection has gained a lot of attention. In fact, deepfake detection might be the only measure to counter the potential proliferation of generated media in support of fake news and its consequences. While many of the available works limit the detection to a pure and direct classification of fake versus real, this does not translate well to a real-world scenario. Indeed, malevolent users can easily apply post-processing techniques to generated content, changing the underlying distribution of fake data. In this work, we provide an in-depth analysis of the robustness of a deepfake detection pipeline, considering different image augmentations, transformations, and other pre-processing steps. These transformations are only applied in the evaluation phase, thus simulating a practical situation in which the detector is not trained on all the possible augmentations that can be used by the attacker. In particular, we analyze the performance of a \(k\)-NN and a linear probe detector on the COCOFake dataset, using image features extracted from pre-trained models, like CLIP and DINO. Our results demonstrate that while the CLIP visual backbone outperforms DINO in deepfake detection with no augmentation, its performance varies significantly in presence of any transformation, favoring the robustness of DINO.
F. Cocchi and L. Baraldi—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amoroso, R., Morelli, D., Cornia, M., Baraldi, L., Del Bimbo, A., Cucchiara, R.: Parents and children: distinguishing multimodal DeepFakes from natural images. arXiv preprint arXiv:2304.00500 (2023)
Balaji, Y., et al.: eDiff-I: text-to-image diffusion models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022)
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: NeurIPS (2020)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)
Corvi, R., Cozzolino, D., Poggi, G., Nagano, K., Verdoliva, L.: Intriguing properties of synthetic images: from generative adversarial networks to diffusion models. In: CVPR Workshops (2023)
Corvi, R., Cozzolino, D., Zingarini, G., Poggi, G., Nagano, K., Verdoliva, L.: On the detection of synthetic images generated by diffusion models. In: ICASSP (2023)
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: NeurIPS (2021)
Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: ICLR (2021)
Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR (2021)
Fernandez, P., Sablayrolles, A., Furon, T., Jégou, H., Douze, M.: Watermarking images in self-supervised latent spaces. In: ICASSP (2022)
Ganguly, S., Ganguly, A., Mohiuddin, S., Malakar, S., Sarkar, R.: ViXNet: Vision Transformer with Xception Network for DeepFakes based video and image forgery detection. Expert Syst. Appl. 210, 118423 (2022)
Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)
Ilharco, G., et al.: OpenCLIP (2021). https://doi.org/10.5281/zenodo.5143773
Karpathy, A., Li, F.: Deep visual-semantic alignments for generating image descriptions. In: CVPR (2015)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: NeurIPS (2016)
Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Advancing high fidelity identity swapping for forgery detection. In: CVPR (2020)
Li, L., et al.: Face X-Ray for more general face forgery detection. In: CVPR (2020)
Liao, W., Hu, K., Yang, M.Y., Rosenhahn, B.: Text to image generation with semantic-spatial aware GAN. In: CVPR (2022)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lu, Y., Ebrahimi, T.: Assessment framework for DeepFake detection in real-world situations. arXiv preprint arXiv:2304.06125 (2023)
Mukhoti, J., et al.: Open vocabulary semantic segmentation with patch aligned contrastive learning. In: CVPR (2023)
Ojha, U., Li, Y., Lee, Y.J.: Towards universal fake image detectors that generalize across generative models. In: CVPR (2023)
Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders. In: NeurIPS (2016)
van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)
Peebles, W., Xie, S.: Scalable diffusion models with transformers. arXiv preprint arXiv:2212.09748 (2022)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125 (2022)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)
Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics++: learning to detect manipulated facial images. In: ICCV (2019)
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: NeurIPS (2022)
Sauer, A., Karras, T., Laine, S., Geiger, A., Aila, T.: StyleGAN-T: unlocking the power of GANs for fast large-scale text-to-image synthesis. arXiv preprint arXiv:2301.09515 (2023)
Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next generation image-text models. In: NeurIPS (2022)
Sha, Z., Li, Z., Yu, N., Zhang, Y.: DE-FAKE: detection and attribution of fake images generated by text-to-image diffusion models. arXiv preprint arXiv:2210.06998 (2022)
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML (2015)
Tao, M., Bao, B.K., Tang, H., Xu, C.: GALIP: generative adversarial CLIPs for text-to-image synthesis. In: CVPR (2023)
Van Den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: ICML (2016)
Xiao, Y., Wei, Z., Wang, Z.: A limited memory BFGS-type method for large-scale unconstrained optimization. Comput. Math. Appl. 56(4), 1001–1009 (2008)
Yu, N., Skripniuk, V., Abdelnabi, S., Fritz, M.: Artificial fingerprinting for generative models: rooting DeepFake attribution in training data. In: ICCV (2021)
Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)
Acknowledgments
This work has partially been supported by the European Commission under the PNRR-M4C2 (PE00000013) project “FAIR - Future Artificial Intelligence Research” and by the Horizon Europe project “European Lighthouse on Safe and Secure AI (ELSA)” (HORIZON-CL4-2021-HUMAN-01-03), co-funded by the European Union (GA 101070617).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cocchi, F., Baraldi, L., Poppi, S., Cornia, M., Baraldi, L., Cucchiara, R. (2023). Unveiling the Impact of Image Transformations on Deepfake Detection: An Experimental Analysis. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-43153-1_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43152-4
Online ISBN: 978-3-031-43153-1
eBook Packages: Computer ScienceComputer Science (R0)