Skip to main content

Dynamic Local Filters in Graph Convolutional Neural Networks

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

Over the last few years, we have seen increasing data generated from non-Euclidean domains, usually represented as graphs with complex relationships. Graph Neural Networks (GNN) have gained a high interest because of their potential in processing graph-structured data. In particular, there is a strong interest in performing convolution on graphs using specific GNN architectures, generally called Graph Convolutional Neural Networks (GCNN). This paper presents a novel method to adapt the behaviour of a GCNN using an input-based dynamically generated filter. Notice that the idea of adapting the network behaviour to the inputs they process to maximize the total performances has aroused much interest in the neural networks literature over the years. The experimental assessment confirms the capabilities of the proposed approach, achieving promising results using simple architectures with a low number of filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/c/MerckActivity.

  2. 2.

    https://github.com/mdeff/cnn_graph.

References

  1. Apicella, A., Isgrò, F., Pollastro, A., Prevete, R.: Adaptive filters in graph convolutional neural networks. Pattern Recogn. 144, 109867 (2023). https://doi.org/10.1016/j.patcog.2023.109867. ISSN 0031-3203

  2. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1993–2001 (2016)

    Google Scholar 

  3. Bishop, C.: Mixture density networks. Workingpaper, Aston University (1994)

    Google Scholar 

  4. Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Redwood City (1990)

    MATH  Google Scholar 

  5. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity. J. Medi. Chem. 34(2), 786–797 (1991)

    Google Scholar 

  6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, vol. 29, pp. 3844–3852 (2016)

    Google Scholar 

  7. Donnarumma, F., Prevete, R., Trautteur, G.: Programming in the brain: a neural network theoretical framework. Connect. Sci. 24(2–3), 71–90 (2012)

    Article  Google Scholar 

  8. Eliasmith, C.: A unified approach to building and controlling spiking attractor networks. Neural Comput. 17(6), 1276–1314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, S., Liu, W., Zhou, Y., Nie, L.: Hplapgcn: hypergraph p-laplacian graph convolutional networks. Neurocomputing 362, 166–174 (2019)

    Article  Google Scholar 

  10. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. vol. 2, pp. 729–734. IEEE (2005)

    Google Scholar 

  11. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017 (2017)

    Google Scholar 

  12. Hechtlinger, Y., Chakravarti, P., Qin, J.: A generalization of convolutional neural networks to graph-structured data. arXiv preprint arXiv:1704.08165 (2017)

  13. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)

  14. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. Adv. Neural. Inf. Process. Syst. 29, 667–675 (2016)

    Google Scholar 

  15. Joachims, T.: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. Technical report, Carnegie-mellon univ pittsburgh pa dept of computer science (1996)

    Google Scholar 

  16. Jordan, M.I.: Attractor dynamics and parallelism in a connectionist sequential machine. In: Artificial Neural Networks: Concept Learning, pp. 112–127 (1990)

    Google Scholar 

  17. Kim, J., et al.: Pure transformers are powerful graph learners. Adv. Neural. Inf. Process. Syst. 35, 14582–14595 (2022)

    Google Scholar 

  18. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  22. Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: Cayleynets: graph convolutional neural networks with complex rational spectral filters. IEEE Trans. Signal Process. 67(1), 97–109 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewis, D.: Reuters-21578 text categorization test collection, distribution 1.0 (1997). http://www.research/.att.com

  24. Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  25. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: International Conference on Machine Learning, pp. 2014–2023 (2016)

    Google Scholar 

  26. Nishimoto, R., Namikawa, J., Tani, J.: Learning multiple goal-directed actions through self-organization of a dynamic neural network model: A humanoid robot experiment. Adapt. Behav. 16(2–3), 166–181 (2008)

    Article  Google Scholar 

  27. Noelle, D.C., Cottrell, G.W.: Towards instructable connectionist systems. In: Sun, R., Bookman, L.A. (eds.) Computational Architectures Integrating Neural and Symbolic Processes, pp. 187–221. Springer, Boston (1995). https://doi.org/10.1007/978-0-585-29599-2_6

    Chapter  Google Scholar 

  28. Paine, R.W., Tani, J.: Motor primitive and sequence self-organization in a hierarchical recurrent neural network. Neural Netw. 17(8–9), 1291–1309 (2004)

    Article  Google Scholar 

  29. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  30. Schmidhuber, J.: Learning to control fast-weight memories: an alternative to dynamic recurrent networks. Neural Comput. 4(1), 131–139 (1992)

    Article  Google Scholar 

  31. Schomburg, I., et al.: Brenda, the enzyme database: updates and major new developments. Nucleic Acids Res. 32(suppl–1), D431–D433 (2004)

    Article  Google Scholar 

  32. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Springer, Boston (2012). https://doi.org/10.1007/978-1-4612-0707-8

    Book  MATH  Google Scholar 

  33. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 29–38 (2017)

    Google Scholar 

  34. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE Trans. Neural Networks 8(3), 714–735 (1997)

    Article  Google Scholar 

  35. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. Stat 1050, 20 (2017)

    Google Scholar 

  36. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871. PMLR (2019)

    Google Scholar 

  37. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems 32, 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Q., Chang, J., Meng, G., Xu, S., Xiang, S., Pan, C.: Learning graph structure via graph convolutional networks. Pattern Recogn. 95, 308–318 (2019)

    Article  Google Scholar 

  39. Zhang, Y., Jin, R., Zhou, Z.H.: Understanding bag-of-words model: a statistical framework. Int. J. Mach. Learn. Cybern. 1(1–4), 43–52 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Apicella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Apicella, A., Isgrò, F., Pollastro, A., Prevete, R. (2023). Dynamic Local Filters in Graph Convolutional Neural Networks. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics