Skip to main content

Video Sonification to Support Visually Impaired People: The VISaVIS Approach

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

In this paper we present a preliminary study about an assistive technology to support blind and visually impaired people (BVIP) in perceiving and navigating indoor environments. In the VISaVIS project we aim at designing the proof-of-concept of a new wearable device to help BVIPs in recognizing the form of the surrounding environment, thus facilitating their movements. In particular, the device is intended to create, at run-time, a sound representation of the environment captured by a head mounted RGBD camera. The underpinning idea is that, through the sonification of the video images captured by the camera, the user will progressively learn to associate the perceived sound to information like the distance, the dimension, and the format of the obstacles he/she is framing. We qualitatively validated our proposal in two challenging and general scenarios, and we grant access to demo videos to prove the effectiveness of our sonification strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://octomap.github.io/.

  2. 2.

    https://tonejs.github.io/.

References

  1. Algazi, V., Duda, R., Thompson, D., Avendano, C.: The CIPIC HRTF database. In: WASPAA (2001). https://doi.org/10.1109/ASPAA.2001.969552

  2. Banf, M., Blanz, V.: Sonification of images for the visually impaired using a multi-level approach. In: AH (2013). https://doi.org/10.1145/2459236.2459264

  3. Borenstein, J., Ulrich, I.: The GuideCane-a computerized travel aid for the active guidance of blind pedestrians. In: ICRA (1997). https://doi.org/10.1109/ROBOT.1997.614314

  4. Bresin, R., Mancini, M., Elblaus, L., Frid, E.: Sonification of the self vs. sonification of the other: differences in the sonification of performed vs. observed simple hand movements. Int. J. Hum.-Comput. Stud. 144, 102500 (2020). https://doi.org/10.1016/j.ijhcs.2020.102500

  5. Dasgupta, S., Fang, K., Chen, K., Savarese, S.: Delay: robust spatial layout estimation for cluttered indoor scenes. In: CVPR (2016)

    Google Scholar 

  6. Fontana, F., Järveläinen, H., Favaro, M.: Is an auditory event more takete? In: SMC (2021). https://doi.org/10.5281/ZENODO.5038640

  7. Geronazzo, M., Bedin, A., Brayda, L., Campus, C., Avanzini, F.: Interactive spatial sonification for non-visual exploration of virtual maps. Int. J. Hum Comput Stud. 85, 4–15 (2016). https://doi.org/10.1016/j.ijhcs.2015.08.004

    Article  Google Scholar 

  8. Gholamalizadeh, T., Pourghaemi, H., Mhaish, A., Ince, G., Duff, D.J.: Sonification of 3d object shape for sensory substitution: an empirical exploration. In: ACHI (2017)

    Google Scholar 

  9. Hamilton-Fletcher, G., Alvarez, J., Obrist, M., Ward, J.: Soundsight: a mobile sensory substitution device that sonifies colour, distance, and temperature. J. Multimod. User Interfaces 16, 107–123 (2022). https://doi.org/10.1007/s12193-021-00376-w

  10. Hoffmann, R., Spagnol, S., Kristjánsson, A., Unnthorsson, R.: Evaluation of an audio-haptic sensory substitution device for enhancing spatial awareness for the visually impaired. Optom. Vis. Sci. 95, 757–765 (2018). https://doi.org/10.1097/OPX.0000000000001284

    Article  Google Scholar 

  11. Jeong, G.Y., Yu, K.H.: Multi-section sensing and vibrotactile perception for walking guide of visually impaired person. Sensors 16(7), 1070 (2016). https://doi.org/10.3390/s16071070

    Article  Google Scholar 

  12. Jóhannesson, Ó.I., Balan, O., Unnthorsson, R., Moldoveanu, A., Kristjánsson, Á.: The sound of vision project: on the feasibility of an audio-haptic representation of the environment, for the visually impaired. Brain Sci. 6(3), 20 (2016)

    Article  Google Scholar 

  13. Khan, S., Nazir, S., Khan, H.U.: Analysis of navigation assistants for blind and visually impaired people: a systematic review. IEEE Access 9, 26712–26734 (2021). https://doi.org/10.1109/ACCESS.2021.3052415

    Article  Google Scholar 

  14. Kristjánsson, Á., Moldoveanu, A.D.B., Jóhannesson, Ó.I., Balan, O., Spagnol, S., Valgeirsdóttir, V.V., Unnthorsson, R.: Designing sensory-substitution devices: principles, pitfalls and potential. Restor. Neurol. Neurosci. 34, 769–787 (2016)

    Google Scholar 

  15. Labbé, M., Michaud, F.: RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 36(2), 416–446 (2019). https://doi.org/10.1002/rob.21831

    Article  Google Scholar 

  16. Li, B., Munoz, J.P., Rong, X., Xiao, J., Tian, Y., Arditi, A.: ISANA: wearable context-aware indoor assistive navigation with obstacle avoidance for the blind. In: ECCV (2016). https://doi.org/10.1007/978-3-319-48881-3_31

  17. Li, J., Stevenson, R.L.: Indoor layout estimation by 2d lidar and camera fusion. arXiv preprint arXiv:2001.05422 (2020)

  18. Loomis, J., Golledge, R., Klatzky, R., Marston, J.: Assisting Wayfinding in Visually Impaired Travelers, pp. 179–202. Lawrence Erlbaum Associates, Inc. (2007). https://doi.org/10.4324/9781003064350-7

  19. Lukierski, R., Leutenegger, S., Davison, A.J.: Room layout estimation from rapid omnidirectional exploration. In: ICRA (2017)

    Google Scholar 

  20. Márkus, N., Arató, A., Juhász, Z., Bognár, G., Késmárki, L.: MOST-NNG: An accessible GPS navigation application integrated into the mobile slate talker (MOST) for the blind. In: ICCHP (2010). https://doi.org/10.1007/978-3-642-14100-3_37

  21. Martinez-Sala, A.S., Losilla, F., Sánchez-Aarnoutse, J.C., García-Haro, J.: Design, implementation and evaluation of an indoor navigation system for visually impaired people. Sensors 15(12), 32168–32187 (2015). https://doi.org/10.3390/s151229912

    Article  Google Scholar 

  22. Mascetti, S., Ahmetovic, D., Gerino, A., Bernareggi, C., Busso, M., Rizzi, A.: Robust traffic lights detection on mobile devices for pedestrians with visual impairment. Comput. Vis. Image Underst. 148, 123–135 (2016). https://doi.org/10.1016/j.cviu.2015.11.017

    Article  Google Scholar 

  23. Meijer, P.: An experimental system for auditory image representations. IEEE Trans. Biomed. Eng. 39(2), 112–121 (1992). https://doi.org/10.1109/10.121642

    Article  Google Scholar 

  24. Munoz, R., Rong, X., Tian, Y.: Depth-aware indoor staircase detection and recognition for the visually impaired. In: ICME Workshops (2016)

    Google Scholar 

  25. Nie, Y., Han, X., Guo, S., Zheng, Y., Chang, J., Zhang, J.J.: Total3DUnderstanding: Joint layout, object pose and mesh reconstruction for indoor scenes from a single image. In: CVPR (2020)

    Google Scholar 

  26. Osiński, D., Łukowska, M., Hjelme, D.R., Wierzchoń, M.: Colorophone 2.0: A wearable color sonification device generating live stereo-soundscapes-design, implementation, and usability audit. Sensors 21(21) (2021). https://doi.org/10.3390/s21217351

  27. Penrod, W., Corbett, M.D., Blasch, B.: Practice report: a master trainer class for professionals in teaching the UltraCane electronic travel device. J. Visual Impairment Blindness 99(11), 711–715 (2005)

    Article  Google Scholar 

  28. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. NeurIPS (2015)

    Google Scholar 

  30. Ren, Y., Li, S., Chen, C., Kuo, C.C.J.: A coarse-to-fine indoor layout estimation (cfile) method. In: ACCV (2017)

    Google Scholar 

  31. Ribeiro, F., Florêncio, D., Chou, P.A., Zhang, Z.: Auditory augmented reality: object sonification for the visually impaired. In: MMSP (2012). https://doi.org/10.1109/MMSP.2012.6343462

  32. Ross, D.A., Lightman, A.: Talking braille: a wireless ubiquitous computing network for orientation and wayfinding. In: ASSETS (2005). https://doi.org/10.1145/1090785.1090805

  33. Takahashi, M., Ji, Y., Umeda, K., Moro, A.: Expandable YOLO: 3D object detection from RGB-D images. In: REM (2020)

    Google Scholar 

  34. Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: a state of the art survey. Pattern Recogn. Lett. 137, 37–52 (2020). https://doi.org/10.1016/j.patrec.2018.10.031

    Article  Google Scholar 

  35. Ulrich, I., Borenstein, J.: The GuideCane - applying mobile robot technologies to assist the visually impaired. IEEE Trans. Syst. Man Cybern. 31(2), 131–136 (2001). https://doi.org/10.1109/3468.911370

    Article  Google Scholar 

  36. Villamizar, L.H., Gualdron, M., González, F., Aceros, J., Rizzo-Sierra, C.V.: A necklace sonar with adjustable scope range for assisting the visually impaired. In: EMBC (2013). https://doi.org/10.1109/EMBC.2013.6609784

  37. Wahab, M.H.A., Talib, A.A., Kadir, H.A., Johari, A., Sidek, R.M., Mutalib, A.A.: Smartcane: Assistive cane for visually-impaired people. arXiv preprint arXiv:1110.5156 (2011). https://doi.org/10.48550/arXiv.1110.5156

  38. Yoshida, T., Kitani, K.M., Koike, H., Belongie, S., Schlei, K.: Edgesonic: Image feature sonification for the visually impaired. In: AH (2011). https://doi.org/10.1145/1959826.1959837

  39. Zhang, C., Cui, Z., Zhang, Y., Zeng, B., Pollefeys, M., Liu, S.: Holistic 3d scene understanding from a single image with implicit representation. In: CVPR (2021)

    Google Scholar 

  40. Zhang, W., Zhang, W., Gu, J.: Edge-semantic learning strategy for layout estimation in indoor environment. IEEE Trans. Cybern. 50(6), 2730–2739 (2019). https://doi.org/10.1109/TCYB.2019.2895837

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by European Comfort S.r.l. and University of Verona through the Joint Research funding scheme with the project “Vis-a-Vis”. The authors would like to thank Mr. Giambattista Bersanelli and Marco Delucca for the valuable support in the problem definition and functional design of the proposed solution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Setti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Onofrei, M., Castellini, F., Pravadelli, G., Drioli, C., Setti, F. (2023). Video Sonification to Support Visually Impaired People: The VISaVIS Approach. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics