Skip to main content

MOVING: A MOdular and Flexible Platform for Embodied VIsual NaviGation

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14234))

Included in the following conference series:

  • 1249 Accesses

Abstract

We present MOVING, a flexible and modular hardware and software platform for visual mapping and navigation in the real world. The platform comprises a flexible sensor configuration consisting of an RGB-D camera, a tracking camera for odometry, and a 2D Lidar, along with a compact processing unit that is equipped with a GPU for running deep learning models. The software is based on ROS, utilizing the RGB-D RTAB-Map SLAM system for mapping and localization and the move base package for path planning and robot movement control. The platform is easily detachable and can be installed on any robot with minimal adaptation required, enabling the reuse of the same robotic software regardless of the robot employed. The effectiveness of the proposed platform was verified through mapping sessions of a large indoor environment, leveraging a Loomo robot. The proposed platform can represent a reasonable solution to speed up the design and testing of new software for autonomous navigation systems, minimizing deployment time in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.aldebaran.com/en/pepper.

  2. 2.

    https://www.segway.com/loomo.

  3. 3.

    https://www.intelrealsense.com/depth-camera-d455/.

  4. 4.

    https://www.intelrealsense.com/tracking-camera-t265/.

  5. 5.

    https://www.slamtec.ai/home/rplidar_a2/.

  6. 6.

    https://www.stereolabs.com/zed-box/.

  7. 7.

    http://wiki.ros.org/realsense2_camera.

  8. 8.

    http://wiki.ros.org/rplidar.

  9. 9.

    https://www.segway.com/loomo.

  10. 10.

    Additional details omitted due to the anonymous submission.

References

  1. Alkendi, Y., Seneviratne, L., Zweiri, Y.: State of the art in vision-based localization techniques for autonomous navigation systems. IEEE Access 9, 76847–76874 (2021)

    Article  Google Scholar 

  2. Anwar, S., Bascou, N.A., Menekse, M., Kardgar, A.: A systematic review of studies on educational robotics. J. Pre-Coll. Eng. Educ. Res. (J-PEER) 9(2), 2 (2019)

    Google Scholar 

  3. Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an affordable open-source mobile robot for education and research. J. Intell. Robot. Syst. 94, 761–775 (2019)

    Article  Google Scholar 

  4. Biswal, P., Mohanty, P.K.: Development of quadruped walking robots: a review. Ain Shams Eng. J. 12(2), 2017–2031 (2021)

    Article  Google Scholar 

  5. Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning to explore using active neural slam. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  6. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  7. Feil-Seifer, D., Matarić, M.J.: Socially assistive robotics. IEEE Robot. Autom. Mag. 18(1), 24–31 (2011)

    Article  Google Scholar 

  8. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

    Article  Google Scholar 

  9. Hägele, M., Nilsson, K., Pires, J.N., Bischoff, R.: Industrial robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 963–986. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-540-30301-5_43

    Chapter  Google Scholar 

  10. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of honda humanoid robot. In: Proceedings of 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146). IEEE (1998)

    Google Scholar 

  11. Kleeberger, K., Bormann, R., Kraus, W., Huber, M.F.: A survey on learning-based robotic grasping. Curr. Robot. Rep. 1, 239–249 (2020)

    Article  Google Scholar 

  12. Labbé, M., Michaud, F.: RTAB-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 36(2), 416–446 (2019)

    Article  Google Scholar 

  13. Marder-Eppstein, E.: move_base - ros wiki (2016). http://wiki.ros.org/move_base

  14. Mondada, F., et al.: Bringing robotics to formal education: the thymio open-source hardware robot. IEEE Robot. Autom. Mag. 24(1), 77–85 (2017)

    Article  Google Scholar 

  15. Montemerlo, M., Roy, N., Thrun, S.: Perspectives on standardization in mobile robot programming: the Carnegie Mellon navigation (carmen) toolkit. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453). IEEE (2003)

    Google Scholar 

  16. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  17. Muratore, L., Laurenzi, A., Hoffman, E.M., Rocchi, A., Caldwell, D.G., Tsagarakis, N.G.: Xbotcore: a real-time cross-robot software platform. In: 2017 First IEEE International Conference on Robotic Computing (IRC). IEEE (2017)

    Google Scholar 

  18. Möller, R., Furnari, A., Battiato, S., Härmä, A., Farinella, G.M.: A survey on human-aware robot navigation. Robot. Auton. Syst. (RAS) 145, 103837 (2021)

    Google Scholar 

  19. Pérez-D’Arpino, C., Liu, C., Goebel, P., Martín-Martín, R., Savarese, S.: Robot navigation in constrained pedestrian environments using reinforcement learning (2020)

    Google Scholar 

  20. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, Japan (2009)

    Google Scholar 

  21. Saeedvand, S., Jafari, M., Aghdasi, H.S., Baltes, J.: A comprehensive survey on humanoid robot development. Knowl. Eng. Rev. 34, e20 (2019)

    Article  Google Scholar 

  22. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

Download references

Aknowledgment

This research is supported by Next Vision s.r.l. (Next Vision: https://www.nextvisionlab.it/) and by the project Future Artificial Intelligence Research (FAIR) - PNRR MUR Cod. PE0000013 - CUP: E63C22001940006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rosano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosano, M., Ragusa, F., Furnari, A., Farinella, G.M. (2023). MOVING: A MOdular and Flexible Platform for Embodied VIsual NaviGation. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics