Skip to main content

Strategic Revenue Management for Discriminatory Processor Sharing Queues

  • Conference paper
  • First Online:
Computer Performance Engineering and Stochastic Modelling (EPEW 2023, ASMTA 2023)

Abstract

We investigate optimal revenue management for Markovian discriminatory processor sharing (DPS) queues. The server receives revenue per customer, as well as an additional fee if customers opt to receive premium service. We first study the parameter allocation of the DPS discipline which optimises the server’s revenue, assuming that all customers rationally select between premium and non-premium service. We then extend revenue management to DPS queues with heterogenous customers that are also allowed to balk. It is shown that the optimal DPS discipline is a strict priority discipline when customers cannot balk, while a non-degenerate DPS discipline is optimal with balking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman, E., Avrachenkov, K., Ayesta, U.: A survey on discriminatory processor sharing. Queueing Syst. 53(1–2), 53–63 (2006). https://doi.org/10.1007/s11134-006-7586-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Altman, E., Shimkin, N.: Individual equilibrium and learning in processor sharing systems. Oper. Res. 46(6), 776–784 (1998)

    Article  MATH  Google Scholar 

  3. Altmann, J., Daanen, H., Oliver, H., Suárez, A.S.B.: How to market-manage a QoS network. In: IEEE INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings, vol. 1, pp. 284–293 (2002)

    Google Scholar 

  4. Ayesta, U., Brun, O., Prabhu, B.J.: Price of anarchy in non-cooperative load balancing games. Perform. Eval. 68(12), 1312–1332 (2011)

    Article  Google Scholar 

  5. Van den Berg, H., Mandjes, M., Nunez-Queija, R.: Pricing and distributed QoS control for elastic network traffic. Oper. Res. Lett. 35, 297–307 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brun, O., Prabhu, B.: Worst-case analysis of non-cooperative load balancing. Ann. Oper. Res. 239, 471–495 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chamberlain, J., Starobinski, D.: Strategic revenue management of preemptive versus non-preemptive queues. Oper. Res. Lett. 49(2), 184–187 (2021). https://doi.org/10.1016/j.orl.2020.12.011

    Article  MathSciNet  MATH  Google Scholar 

  8. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Altman, E., Ayesta, U., Prabhu, B.J.: Load balancing in processor sharing systems. Telecommun. Syst. 47(1–2), 35–48 (2011). https://doi.org/10.1007/s11235-010-9300-8

  10. Fayolle, G., Mitrani, I., Iasnogorodski, R.: Sharing a processor among many job classes. J. ACM 27(3), 519–532 (1980). https://doi.org/10.1145/322203.322212

    Article  MathSciNet  MATH  Google Scholar 

  11. Fiems, D., Prabhu, B., De Turck, K.: Travel times, rational queueing and the macroscopic fundamental diagram of traffic flow. Physica A-Stat. Mech. Appl. 524, 412–421 (2019). https://doi.org/10.1016/j.physa.2019.04.127

    Article  MathSciNet  MATH  Google Scholar 

  12. Fiems, D., Prabhu, B.J.: Macroscopic modelling and analysis of flows during rush-hour congestion. Perform. Eval. 149–150 (2021). https://doi.org/10.1016/j.peva.2021.102218

  13. Gurvich, I., Lariviere, M.A., Ozkan, C.: Coverage, coarseness, and classification: determinants of social efficiency in priority queues. Manage. Sci. 65(3), 1061–1075 (2019)

    Article  Google Scholar 

  14. Hayel, Y., Tuffin, B.: Pricing for heterogeneous services at a discriminatory processor sharing queue. In: Proceedings of Networking (2005)

    Google Scholar 

  15. Hofbauer, J.: Evolutionary Games and Population Dynamics. Cambridge University Press (1998)

    Google Scholar 

  16. Massoulié, L., Roberts, J.: Bandwidth sharing and admission control for elastic traffic. Telecommun. Syst. 15(1–2), 185–201 (2000). https://doi.org/10.1023/A:1019138827659

    Article  MATH  Google Scholar 

  17. Massoulié, L., Roberts, J.: Bandwidth sharing: objectives and algorithms. IEEE/ACM Trans. Networking 10(3), 320–328 (2002). https://doi.org/10.1109/TNET.2002.1012364

    Article  Google Scholar 

  18. Ravner, L., Haviv, M., Vu, H.L.: A strategic timing of arrivals to a linear slowdown processor sharing system. Eur. J. Oper. Res. 255, 496–504 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Roberts, J.W.: A survey on statistical bandwidth sharing. Comput. Netw. 45(3), 319–332 (2004). https://doi.org/10.1016/j.comnet.2004.03.010

    Article  MATH  Google Scholar 

  20. Sacoto-Cabrera, E.J., Guijarro, L., Vidal, J.R., Pla, V.: Economic feasibility of virtual operators in 5G via network slicing. Futur. Gener. Comput. Syst. 109, 172–187 (2020)

    Article  Google Scholar 

  21. Weibull, J.: Evolutionary Game Theory. MIT Press (1995)

    Google Scholar 

  22. Wu, Y., Bui, L., Johari, R.: Heavy traffic approximation of equilibria in resource sharing games. IEEE J. Sel. Areas Commun. 30(11), 2200–2209 (2012)

    Article  Google Scholar 

  23. Xu, B., Xu, X., Zhong, Y.: Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. J. Ind. Manage. Optim. 15(4), 1599–1615 (2019)

    Google Scholar 

  24. Yashkov, S.F., Yashkova, A.S.: Processor sharing: a survey of the mathematical theory. Autom. Remote Control 68(9), 1662–1731 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Fiems .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fiems, D. (2023). Strategic Revenue Management for Discriminatory Processor Sharing Queues. In: Iacono, M., Scarpa, M., Barbierato, E., Serrano, S., Cerotti, D., Longo, F. (eds) Computer Performance Engineering and Stochastic Modelling. EPEW ASMTA 2023 2023. Lecture Notes in Computer Science, vol 14231. Springer, Cham. https://doi.org/10.1007/978-3-031-43185-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43185-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43184-5

  • Online ISBN: 978-3-031-43185-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics