Skip to main content

Performance and Energy Evaluation for Solving a Schrödinger-Poisson System on Multicore Processors

  • Conference paper
  • First Online:
Computer Performance Engineering and Stochastic Modelling (EPEW 2023, ASMTA 2023)

Abstract

In this article, a Fourier-Galerkin approach for solving a Schrödinger-Poisson system is considered. The Fourier-Galerkin approach leads to an approximation method with two steps consisting of a truncation of the Fourier-Galerkin series and the solution of the resulting ordinary differential equation with a Runge-Kutta solver. Both steps influence the numerical accuracy of the final solution as well as the performance and energy behavior. The numerical approximation software is implemented as a multi-threaded program. The exploitation of frequency scaling and the degree of parallelism provided by the number of cores may also result in different values of execution time and energy consumption. The goal of this article is to evaluate the performance behavior of the numerical approximation software based on measurements on three multicore platforms. The mutual interaction of the number of threads, the operational frequency, and the computational requirement for achieving a specific numerical accuracy of the solution are investigated. Experiments show a good scalability behavior for computing approximation solutions of different numerical accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balay, S.A., et al.: PETSc users manual. Technical report ANL-95/11 - Revision 3.8, Argonne National Laboratory (2017)

    Google Scholar 

  2. Bezati, E., Casale-Brunet, S., Mattavelli, M., Janneck, J.W.: Clock-gating of streaming applications for energy efficient implementations on FPGAs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(4), 699–703 (2017)

    Article  Google Scholar 

  3. Burrage, K.: Parallel methods for initial value problems. Appl. Numer. Math. 11, 5–25 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ehrhardt, M., Zisowsky, A.: Fast calculation of energy and mass preserving solutions of schrödinger-poisson systems on unbounded domains. J. Comput. Appl. Math. 187(1), 1–28 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Enright, W.H., Higham, D.J., Owren, B., Sharp, P.W.: A Survey of the Explicit Runge-Kutta Method. Technical report 94–291, University of Toronto, Department of Computer Science (1995)

    Google Scholar 

  7. Gear, C.W.: Massive parallelism across space in ODEs. Appl. Numer. Math. 11, 27–43 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haidar, A., Jagode, H., Vaccaro, P., YarKhan, A., Tomov, S., Dongarra, J.: Investigating power capping toward energy-efficient scientific applications. Concurr. Comput. Pract. Exp. 31(6), e4485 (2019). e4485 cpe.4485

    Google Scholar 

  9. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, Berlin, Heidelberg (1993). https://doi.org/10.1007/978-3-540-78862-1

  10. Harrison, R., Moroz, I., Tod, K.P.: A numerical study of the Schrödinger-Newton equations. Nonlinearity 16(1), 101–122 (2002)

    Google Scholar 

  11. Intel. Intel 64 and IA-32 Architecture Software Developer’s Manual, System Programming Guide, 2011

    Google Scholar 

  12. Mocz, P., Lancaster, L., Fialkov, A., Becerra, F., Chavanis, P.: Schrödinger-poisson-vlasov-poisson correspondence. Phys. Rev. D 97, 083519 (2018)

    Google Scholar 

  13. Nguyen, V.T., Bertrand, P., Izrar, B., Fijalkow, E., Feix, M.R.: Integration of vlasov equation by quantum mechanical formalism. Comput. Phys. Commun. 34, 295–301 (1985)

    Article  Google Scholar 

  14. Rauber, T., Rünger, G.: Parallel execution of embedded and iterated Runge-Kutta methods. Concurr. Pract. Exp. 11(7), 367–385 (1999)

    Google Scholar 

  15. Rauber, T., Rünger, G.: On the energy consumption and accuracy of multithreaded embedded Runge-Kutta methods. In: Proceedings of the The International Conference on High Performance Computing & Simulation (HPCS 2019), vol. 15, pp. 382–389. IEEE, July 2019

    Google Scholar 

  16. Rauber, T., Rünger, G.: Modeling the effect of application-specific program transformations on energy and performance improvements of parallel ODE solvers. J. Comput. Sci. 51 (2021)

    Google Scholar 

  17. Rauber, T., Rünger, G., Stachowski, M.: Performance and energy metrics for multi-threaded applications on DVFS processors. Sustain. Comput. Inform. Syst. 17, 55–68 (2017)

    Google Scholar 

  18. Rotem, E., Naveh, A., Ananthakrishnan, A., Rajwan, D., Weissmann, E.: Power-management architecture of the intel microarchitecture code-named sandy bridge. IEEE Micro 32(2), 20–27 (2012)

    Article  Google Scholar 

  19. Saxe, E.: Power-efficient software. Commun. ACM 53(2), 44–48 (2010)

    Article  Google Scholar 

  20. Tarplee, K.M., Friese, R., Maciejewski, A.A., Siegel, H.J., Chong, E.K.P.: Energy and makespan tradeoffs in heterogeneous computing systems using efficient linear programming techniques. IEEE Trans. Parallel Distrib. Syst. 27(6), 1633–1646 (2016)

    Article  Google Scholar 

  21. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented tool suite for x86 multicore environments. In: 39th International Conference on Parallel Processing Workshops, ICPP ’10, pp. 207–216. IEEE Computer Society (2010)

    Google Scholar 

  22. van der Houwen, P., Sommeijer, B.: Parallel Iteration of high-order Runge-Kutta Methods with stepsize control. J. Comput. Appl. Math. 29, 111–127 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Velten, M., Schöne, R., Ilsche, T., Hackenberg, D.: Memory performance of AMD EPYC Rome and intel cascade lake SP server processors. In: Feng, D., Becker, S., Herbst, N., Leitner, P. (eds.), ICPE ’22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, 9–13 April 2022, pp. 165–175. ACM (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rauber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rauber, T., Rünger, G. (2023). Performance and Energy Evaluation for Solving a Schrödinger-Poisson System on Multicore Processors. In: Iacono, M., Scarpa, M., Barbierato, E., Serrano, S., Cerotti, D., Longo, F. (eds) Computer Performance Engineering and Stochastic Modelling. EPEW ASMTA 2023 2023. Lecture Notes in Computer Science, vol 14231. Springer, Cham. https://doi.org/10.1007/978-3-031-43185-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43185-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43184-5

  • Online ISBN: 978-3-031-43185-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics