Abstract
Breast cancer is a prevalent and life-threatening disease affecting millions of women worldwide. Timely and accurate detection is crucial for improving patient outcomes. Deep learning techniques have shown remarkable success in image classification tasks, including breast cancer diagnosis. However, the integration of quantum computing into deep learning frameworks remains relatively unexplored. This paper investigates the potential of leveraging quantum computing to enhance image classification, particularly in breast cancer detection. The focus is on utilizing the “breakhis-400x” binary dataset to develop an advanced breast cancer image classifier. The proposed Quantum-Optimized AlexNet (QOA) approach, combines the feature extraction capabilities of the AlexNet model with a quantum layer acting as a linear layer. Experimental results on the BreakHis-400x dataset demonstrate the significant potential of the QOA model, achieving an overall accuracy of 93.67%. These findings highlight the utility of Quantum Computing in improving deep learning models for image classification, particularly in medical imaging analysis, and contribute to the advancement of precision medicine in breast cancer diagnosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer. J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492
Ayyad, S.M., et al.: Role of AI and histopathological images in detecting prostate cancer: a survey. Sensors 21(8), 2586 (2021). https://doi.org/10.3390/s21082586
Rączkowski, Ł, Możejko, M., Zambonelli, J., Szczurek, E.: ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning. Sci. Rep. 9(1), 14347 (2019). https://doi.org/10.1038/s41598-019-50587-1
Antoniou, A., Storkey, A., Edwards, H.: Augmenting image classifiers using data augmentation generative adversarial networks. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 594–603. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_58
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826. (2016). https://doi.org/10.1109/CVPR.2016.308
Tilaye, G.F., Pandey, A.: Investigating the effects of hyperparameters in quantum-enhanced deep reinforcement learning. Quantum Eng. 2023, 16 (2023). https://doi.org/10.1155/2023/2451990
Kaya, M., Hajimirza, S.: Using a novel transfer learning method for designing thin film solar cells with enhanced quantum efficiencies. Sci. Rep. 9(1), 1 (2019). https://doi.org/10.1038/s41598-019-41316-9
Henderson, M., Shakya, S., Pradhan, S., Cook, T.: Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Mach. Intell. 2(1), 2 (2020). https://doi.org/10.1007/s42484-020-00012-y
Pallathadka, H., Mustafa, M., Sanchez, D.T., Sajja, G.S., Gour, S., Naved, M.: Impact of machine learning on management, healthcare, and agriculture. Materials Today: Proc. 80, 2803–2806 (2023). https://doi.org/10.1016/j.matpr.2021.07.042
Ming, C., Viassolo, V., Probst-Hensch, N., Chappuis, P.O., Dinov, I.D., Katapodi, M.C.: Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models. Breast Cancer Res. 21(1), 1–11 (2019). https://doi.org/10.1186/s13058-019-1158-4
Dhahri, H., Maghayreh, E.A., Mahmood, A., Elkilani, W., Nagi, M.F.: Automated breast cancer diagnosis based on machine learning algorithms. J. Healthc. Eng. 2019, 4253641 (2019). https://doi.org/10.1155/2019/4253641
Ganggayah, M.D., Taib, N.A., Har, Y.C., Lio, P., Dhillon, S.K.: Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Med. Inform. Decis. Mak. 19, 1–17 (2019). https://doi.org/10.1186/s12911-019-0801-4
Islam, M.M., Haque, M.R., Iqbal, H., Hasan, M.M., Hasan, M., Kabir, M.N.: Breast cancer prediction: a comparative study using machine learning techniques. SN Comput. Sci. 1, 1–14 (2020). https://doi.org/10.1007/s42979-020-00305-w
Gupta, C., Gill, N.S.: Machine learning techniques and extreme learning machine for early breast cancer detection. Int. J. Innovative Technol. Exploring Eng. (IJITEE) 9(04), 163–167 (2020) ISSN: 2278–3075
Bhise, S., Gadekar, S., Gaur, A.S., Bepari, S., Deepmala Kale, D.S.A.: Breast cancer detection using machine learning techniques. Int. J. Eng. Res. Technol. 10(7) (2021)
Arzmi, M.H., et al.: The classification of breast cancer: the effect of hyperparameter optimisation towards the efficacy of feature-based transfer learning pipeline. In: Arzmi, M.H., et al. (eds.) Deep Learning in Cancer Diagnostics: A Feature-based Transfer Learning Evaluation, pp. 15–19. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-19-8937-7_3
Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2015). https://doi.org/10.1109/TBME.2015.2496264
Chhipa, P.C., Upadhyay, R., Pihlgren, G.G., Saini, R., Uchida, S., Liwicki, M.: Magnification prior: a self-supervised method for learning representations on breast cancer histopathological images. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2717–2727. (2023). https://doi.org/10.48550/arXiv.2203.07707
Patil, A., Tamboli, D., Meena, S., Anand, D., Sethi, A.: Breast cancer histopathology image classification and localization using multiple instance learning. In: 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 1–4. Bangalore, India (2019) https://doi.org/10.1109/WIECON-ECE48653.2019.9019916
Kang, X., Liu, X., Nie, X., Yin, Y.: Learning binary semantic embedding for breast histology image classification and retrieval. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1180–1184. IEEE (2021). https://doi.org/10.1109/ICASSP39728.2021.9415036
Chiang, C.F.: Quantum phase estimation with an arbitrary number of qubits. Int. J. Quantum Inform. 11(01), 1350008 (2013). https://doi.org/10.1142/S0219749913500081
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ahmed, H.K., Tantawi, B., Magdy, M., Sayed, G.I. (2023). Quantum Optimized AlexNet for Histopathology Breast Image Diagnosis. In: Hassanien, A., Rizk, R.Y., Pamucar, D., Darwish, A., Chang, KC. (eds) Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023. AISI 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-031-43247-7_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-43247-7_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43246-0
Online ISBN: 978-3-031-43247-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)