Skip to main content

Quantum Optimized AlexNet for Histopathology Breast Image Diagnosis

  • Conference paper
  • First Online:
Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023 (AISI 2023)

Abstract

Breast cancer is a prevalent and life-threatening disease affecting millions of women worldwide. Timely and accurate detection is crucial for improving patient outcomes. Deep learning techniques have shown remarkable success in image classification tasks, including breast cancer diagnosis. However, the integration of quantum computing into deep learning frameworks remains relatively unexplored. This paper investigates the potential of leveraging quantum computing to enhance image classification, particularly in breast cancer detection. The focus is on utilizing the “breakhis-400x” binary dataset to develop an advanced breast cancer image classifier. The proposed Quantum-Optimized AlexNet (QOA) approach, combines the feature extraction capabilities of the AlexNet model with a quantum layer acting as a linear layer. Experimental results on the BreakHis-400x dataset demonstrate the significant potential of the QOA model, achieving an overall accuracy of 93.67%. These findings highlight the utility of Quantum Computing in improving deep learning models for image classification, particularly in medical imaging analysis, and contribute to the advancement of precision medicine in breast cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer. J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Ayyad, S.M., et al.: Role of AI and histopathological images in detecting prostate cancer: a survey. Sensors 21(8), 2586 (2021). https://doi.org/10.3390/s21082586

    Article  Google Scholar 

  3. Rączkowski, Ł, Możejko, M., Zambonelli, J., Szczurek, E.: ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning. Sci. Rep. 9(1), 14347 (2019). https://doi.org/10.1038/s41598-019-50587-1

    Article  Google Scholar 

  4. Antoniou, A., Storkey, A., Edwards, H.: Augmenting image classifiers using data augmentation generative adversarial networks. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 594–603. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_58

    Chapter  Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  7. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826. (2016). https://doi.org/10.1109/CVPR.2016.308

  8. Tilaye, G.F., Pandey, A.: Investigating the effects of hyperparameters in quantum-enhanced deep reinforcement learning. Quantum Eng. 2023, 16 (2023). https://doi.org/10.1155/2023/2451990

    Article  Google Scholar 

  9. Kaya, M., Hajimirza, S.: Using a novel transfer learning method for designing thin film solar cells with enhanced quantum efficiencies. Sci. Rep. 9(1), 1 (2019). https://doi.org/10.1038/s41598-019-41316-9

    Article  Google Scholar 

  10. Henderson, M., Shakya, S., Pradhan, S., Cook, T.: Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Mach. Intell. 2(1), 2 (2020). https://doi.org/10.1007/s42484-020-00012-y

    Article  Google Scholar 

  11. Pallathadka, H., Mustafa, M., Sanchez, D.T., Sajja, G.S., Gour, S., Naved, M.: Impact of machine learning on management, healthcare, and agriculture. Materials Today: Proc. 80, 2803–2806 (2023). https://doi.org/10.1016/j.matpr.2021.07.042

    Article  Google Scholar 

  12. Ming, C., Viassolo, V., Probst-Hensch, N., Chappuis, P.O., Dinov, I.D., Katapodi, M.C.: Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models. Breast Cancer Res. 21(1), 1–11 (2019). https://doi.org/10.1186/s13058-019-1158-4

    Article  Google Scholar 

  13. Dhahri, H., Maghayreh, E.A., Mahmood, A., Elkilani, W., Nagi, M.F.: Automated breast cancer diagnosis based on machine learning algorithms. J. Healthc. Eng. 2019, 4253641 (2019). https://doi.org/10.1155/2019/4253641

    Article  Google Scholar 

  14. Ganggayah, M.D., Taib, N.A., Har, Y.C., Lio, P., Dhillon, S.K.: Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Med. Inform. Decis. Mak. 19, 1–17 (2019). https://doi.org/10.1186/s12911-019-0801-4

    Article  Google Scholar 

  15. Islam, M.M., Haque, M.R., Iqbal, H., Hasan, M.M., Hasan, M., Kabir, M.N.: Breast cancer prediction: a comparative study using machine learning techniques. SN Comput. Sci. 1, 1–14 (2020). https://doi.org/10.1007/s42979-020-00305-w

    Article  Google Scholar 

  16. Gupta, C., Gill, N.S.: Machine learning techniques and extreme learning machine for early breast cancer detection. Int. J. Innovative Technol. Exploring Eng. (IJITEE) 9(04), 163–167 (2020) ISSN: 2278–3075

    Google Scholar 

  17. Bhise, S., Gadekar, S., Gaur, A.S., Bepari, S., Deepmala Kale, D.S.A.: Breast cancer detection using machine learning techniques. Int. J. Eng. Res. Technol. 10(7) (2021)

    Google Scholar 

  18. Arzmi, M.H., et al.: The classification of breast cancer: the effect of hyperparameter optimisation towards the efficacy of feature-based transfer learning pipeline. In: Arzmi, M.H., et al. (eds.) Deep Learning in Cancer Diagnostics: A Feature-based Transfer Learning Evaluation, pp. 15–19. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-19-8937-7_3

    Chapter  Google Scholar 

  19. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2015). https://doi.org/10.1109/TBME.2015.2496264

    Article  Google Scholar 

  20. Chhipa, P.C., Upadhyay, R., Pihlgren, G.G., Saini, R., Uchida, S., Liwicki, M.: Magnification prior: a self-supervised method for learning representations on breast cancer histopathological images. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2717–2727. (2023). https://doi.org/10.48550/arXiv.2203.07707

  21. Patil, A., Tamboli, D., Meena, S., Anand, D., Sethi, A.: Breast cancer histopathology image classification and localization using multiple instance learning. In: 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 1–4. Bangalore, India (2019) https://doi.org/10.1109/WIECON-ECE48653.2019.9019916

  22. Kang, X., Liu, X., Nie, X., Yin, Y.: Learning binary semantic embedding for breast histology image classification and retrieval. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1180–1184. IEEE (2021). https://doi.org/10.1109/ICASSP39728.2021.9415036

  23. Chiang, C.F.: Quantum phase estimation with an arbitrary number of qubits. Int. J. Quantum Inform. 11(01), 1350008 (2013). https://doi.org/10.1142/S0219749913500081

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehad Ismail Sayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, H.K., Tantawi, B., Magdy, M., Sayed, G.I. (2023). Quantum Optimized AlexNet for Histopathology Breast Image Diagnosis. In: Hassanien, A., Rizk, R.Y., Pamucar, D., Darwish, A., Chang, KC. (eds) Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023. AISI 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-031-43247-7_31

Download citation

Publish with us

Policies and ethics