Skip to main content

Computation of Nash Equilibria of Attack and Defense Games on Networks

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2023)

Abstract

We consider the computation of a Nash equilibrium in attack and defense games on networks (Bloch et al. [1]). We prove that a Nash Equilibrium of the game can be computed in polynomial time with respect to the number of nodes in the network. We propose an algorithm that runs in \(O(n^4)\) time with respect to the number of nodes of the network, n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the paper when using the term path we will mean a simple path.

References

  1. Bloch, F., Chatterjee, K., Dutta, B.: Attack and interception in networks (forthcoming). Theoret. Econ. 1–51 (2023)

    Google Scholar 

  2. Chan, H., Ceyko, M., Ortiz, L.E.: Interdependent defense games: modeling interdependent security under deliberate attacks. In: Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, pp. 152–162. UAI 2012 (2012)

    Google Scholar 

  3. Collado, R.A., Papp, D.: Network interdiction - models, applications, unexplored directions. Technical report. RRR 4–2012, Rutgers University (2010)

    Google Scholar 

  4. Dell, M.: Trafficking networks and the Mexican drug war. Am. Econ. Rev. 105(6), 1738–79 (2015)

    Article  Google Scholar 

  5. Fulkerson, D.R., Harding, G.C.: Maximizing the minimum source-sink path subject to a budget constraint. Math. Program. 13(1), 116–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ghare, P.M., Montgomery, D.C., Turner, W.C.: Optimal interdiction policy for a flow network. Naval Res. Logist. Q. 18(1), 37–45 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golden, B.: A problem in network interdiction. Naval Res. Logist. Q. 25(4), 711–713 (1978)

    Article  MATH  Google Scholar 

  8. McMasters, A.W., Mustin, T.M.: Optimal interdiction of a supply network. Naval Res. Logist. Q. 17(3), 261–268 (1970)

    Article  MATH  Google Scholar 

  9. Mirzaei, M., Mirzapour Al-e-hashem, S.M.J., Akbarpour Shirazi, M.: A maximum-flow network interdiction problem in an uncertain environment under information asymmetry condition: application to smuggling goods. Comput. Indus. Eng. 162, 107708 (2021)

    Google Scholar 

  10. Morton, D.P., Pan, F., Saeger, K.J.: Models for nuclear smuggling interdiction. IIE Trans. 39(1), 3–14 (2007)

    Article  Google Scholar 

  11. Smith, J.C., Song, Y.: A survey of network interdiction models and algorithms. Eur. J. Oper. Res. 283(3), 797–811 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Washburn, A., Wood, K.: Two-person zero-sum games for network interdiction. Oper. Res. 43(2), 243–251 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish National Science Centre through grant 2018/29/B/ST6/00174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Kaźmierowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaźmierowski, S., Dziubiński, M. (2023). Computation of Nash Equilibria of Attack and Defense Games on Networks. In: Deligkas, A., Filos-Ratsikas, A. (eds) Algorithmic Game Theory. SAGT 2023. Lecture Notes in Computer Science, vol 14238. Springer, Cham. https://doi.org/10.1007/978-3-031-43254-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43254-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43253-8

  • Online ISBN: 978-3-031-43254-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics