Skip to main content

Efficient Algorithms for LTL\(_f\) Synthesis

  • Conference paper
  • First Online:
Multi-Agent Systems (EUMAS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14282))

Included in the following conference series:

  • 411 Accesses

Abstract

The use of temporal logic on finite traces, like Linear Temporal Logic (ltl) has shown to be very powerful for AI. The focus on finite traces was also motivated by the difficulties of finding good algorithms for automata determinization in the infinite trace setting as ltl, a crucial step in the ltl synthesis problem, while such difficulties in the finite setting disappear. For this reason, synthesis of ltl on finite traces (ltl \(_f\)) has gained a lot of traction in the research community due to its generality and relevance to other fields. This work aims to study efficient algorithms for solving ltl \(_f\) synthesis. We first focus on a compositional approach for computing the deterministic finite automaton (DFA), which will be used together with efficient backward fixpoint computation to solve the DFA game. Then, we consider a family of forward ltl \(_f\) synthesis techniques that build the DFA on-the-fly, while searching for a solution, thus possibly avoiding the full DFA construction. Our contributions brought to the realization of efficient tools that achieved the best scores in the 2023 edition of SYNTCOMP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.syntcomp.org/syntcomp-2023-results/.

References

  1. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: dynamic programs for omega-regular objectives. In: LICS, pp. 279–290. IEEE Computer Society (2001)

    Google Scholar 

  2. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of büchi automata. Theor. Comput. Sci. 363(2), 224–233 (2006)

    Article  MATH  Google Scholar 

  3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Ann. Math. Artif. Intell. 22(1–2), 5–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  6. Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y.: Hybrid compositional reasoning for reactive synthesis from finite-horizon specifications. In: AAAI, pp. 9766–9774. AAAI Press (2020)

    Google Scholar 

  7. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Strong planning under partial observability. Artif. Intell. 170(4–5), 337–384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  10. Camacho, A., Baier, J.A., Muise, C.J., McIlraith, S.A.: Finite LTL synthesis as planning. In: ICAPS, pp. 29–38. AAAI Press (2018)

    Google Scholar 

  11. Camacho, A., McIlraith, S.A.: Strong fully observable non-deterministic planning with LTL and LTLf goals. In: IJCAI, pp. 5523–5531 (2019). https://www.ijcai.org/

  12. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Darwiche, A.: SDD: a new canonical representation of propositional knowledge bases. In: IJCAI, pp. 819–826. IJCAI/AAAI (2011)

    Google Scholar 

  14. De Giacomo, G., Favorito, M.: Compositional approach to translate LTLf/LDLf into deterministic finite automata. In: ICAPS, pp. 122–130. AAAI Press (2021)

    Google Scholar 

  15. De Giacomo, G., Favorito, M., Li, J., Vardi, M.Y., Xiao, S., Zhu, S.: Ltlf synthesis as AND-OR graph search: Knowledge compilation at work. In: IJCAI, pp. 2591–2598 (2022). https://www.ijcai.org/

  16. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: IJCAI, pp. 854–860. IJCAI/AAAI (2013)

    Google Scholar 

  17. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: IJCAI, pp. 1558–1564. AAAI Press (2015)

    Google Scholar 

  18. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 995–1072. Elsevier and MIT Press (1990)

    Google Scholar 

  19. Favorito, M.: Automata-theoretic techniques for reasoning and learning in linear-time temporal logics on finite traces (2022)

    Google Scholar 

  20. Favorito, M.: Forward LTLf synthesis: DPLL at work (2023). https://doi.org/10.48550/arXiv.2302.13825

  21. Favorito, M., Zhu, S.: Lydiasyft: a compositional symbolic synthesizer for LTLf specifications (2023)

    Google Scholar 

  22. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for büchi word automata, with application to determinization. Inf. Comput. 245, 136–151 (2015)

    Article  MATH  Google Scholar 

  23. Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Automated Planning, Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2013)

    Google Scholar 

  24. Ghallab, M., Nau, D., Traverso, P.: Automated Planning and Acting. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  25. Goldman, R.P., Boddy, M.S.: Expressive planning and explicit knowledge. In: AIPS, pp. 110–117. AAAI (1996)

    Google Scholar 

  26. Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C.: An Introduction to the Planning Domain Definition Language. ynthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, S (2019)

    Google Scholar 

  27. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0_5

    Chapter  Google Scholar 

  28. Klarlund, N.: Mona & fido: the logic-automaton connection in practice. In: Nielsen, M., Thomas, W. (eds.) CSL 1997. LNCS, vol. 1414, pp. 311–326. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028022

    Chapter  MATH  Google Scholar 

  29. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int. J. Found. Comput. Sci. 13(4), 571–586 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mattmüller, R.: Informed progression search for fully observable nondeterministic planning = Informierte Vorwärtssuche für nichtdeterministisches Planen unter vollständiger Beobachtbarkeit. Ph.D. thesis, University of Freiburg, Germany (2013)

    Google Scholar 

  31. Mattmüller, R., Ortlieb, M., Helmert, M., Bercher, P.: Pattern database heuristics for fully observable nondeterministic planning. In: ICAPS, pp. 105–112. AAAI (2010)

    Google Scholar 

  32. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4_2

    Chapter  MATH  Google Scholar 

  33. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

  34. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM Press (1989)

    Google Scholar 

  35. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  36. Reif, J.H.: The complexity of two-player games of incomplete information. J. Comput. Syst. Sci. 29(2), 274–301 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT press, Cambridge (2001)

    Book  MATH  Google Scholar 

  38. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata constructions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 396–411. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191_28

    Chapter  Google Scholar 

  39. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Hoboken (2009)

    Google Scholar 

  40. Xiao, S., Li, J., Zhu, S., Shi, Y., Pu, G., Vardi, M.Y.: On-the-fly synthesis for LTL over finite traces. In: AAAI, pp. 6530–6537. AAAI Press (2021)

    Google Scholar 

  41. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In: IJCAI, pp. 1362–1369 (2017). https://www.ijcai.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Favorito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Favorito, M. (2023). Efficient Algorithms for LTL\(_f\) Synthesis. In: Malvone, V., Murano, A. (eds) Multi-Agent Systems. EUMAS 2023. Lecture Notes in Computer Science(), vol 14282. Springer, Cham. https://doi.org/10.1007/978-3-031-43264-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43264-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43263-7

  • Online ISBN: 978-3-031-43264-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics