Skip to main content

A Computability Perspective on (Verified) Machine Learning

  • Conference paper
  • First Online:
Recent Trends in Algebraic Development Techniques (WADT 2022)

Abstract

In Computer Science there is a strong consensus that it is highly desirable to combine the versatility of Machine Learning (ML) with the assurances formal verification can provide. However, it is unclear what such ‘verified ML’ should look like.

This paper is the first to formalise the concepts of classifiers and learners in ML in terms of computable analysis. It provides results about which properties of classifiers and learners are computable. By doing this we establish a bridge between the continuous mathematics underpinning ML and the discrete setting of most of computer science.

We define the computational tasks underlying the newly suggested verified ML in a model-agnostic way, i.e., they work for all machine learning approaches including, e.g., random forests, support vector machines, and Neural Networks. We show that they are in principle computable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Arguing informally, continuity means that sufficiently good approximations of the input specify approximations of the output to desired precision. Computability means that we can actually compute the desired approximations of the output from sufficiently good approximations of the input. The latter cannot be possible for discontinuous function.

  2. 2.

    By uncurrying, we can move from a learner L to the function \(\ell : (\textbf{X} \times k)^* \times \textbf{X} \rightarrow \textbf{k}_\bot \) such that \(L((x_i,n_i)_{i \le j})(x) = \ell ((x_i,n_i)_{i \le j}, x)\). One of them is continuous iff the other is. Now we can see that if \(\ell \) returns a colour, it returns the same colour on an open neighbourhood of both training sample and test point.

  3. 3.

    Our overall algorithms are theoretical and not easily put into code. However, the individual concepts can be, in order to help the understanding of mathematical concepts such as robustness/sparsity and density.

References

  1. Ackerman, N., Asilis, J., Di, J., Freer, C., Tristan, J.B.: On the computable learning of continuous features. In: Presentation at CCA 2021 (2021)

    Google Scholar 

  2. de Brecht, M., Pauly, A.: Noetherian Quasi-Polish spaces. In: 26th EACSL Annual Conference on Computer Science Logic (CSL 2017). LIPIcs, vol. 82, pp. 16:1–16:17 (2017)

    Google Scholar 

  3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy, pp. 39–57 (2017)

    Google Scholar 

  4. D’Amour, A., et al.: Underspecification presents challenges for credibility in modern machine learning. J. Mach. Learn. Res. 23(226), 1–61 (2022). http://jmlr.org/papers/v23/20-1335.html

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  6. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  7. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  8. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying the safety of autonomous systems with neural network controllers. ACM Trans. Embed. Comput. Syst. 20(1), 1–26 (2020). https://doi.org/10.1145/3419742

  9. Kwiatkowska, M.Z.: Safety verification for deep neural networks with provable guarantees (Invited Paper). In: Fokkink, W., van Glabbeek, R. (eds.) 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 140, pp. 1:1–1:5. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). http://drops.dagstuhl.de/opus/volltexte/2019/10903

  10. Leino, K., Wang, Z., Fredrikson, M.: Globally-robust neural networks. In: Proceedings of the 38th International Conference on Machine Learning, pp. 6212–6222. PMLR, July 2021

    Google Scholar 

  11. Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.: Algorithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–404 (2021). https://doi.org/10.1561/2400000035

    Article  Google Scholar 

  12. Macintyre, A., Wilkie, A.J.: On the decidability of the real exponential field. In: Odifreddi, P. (ed.) Kreiseliana. About and Around Georg Kreisel, pp. 441–467. A K Peters (1996)

    Google Scholar 

  13. Morgan, J., Paiement, A., Pauly, A., Seisenberger, M.: Adaptive neighbourhoods for the discovery of adversarial examples. arXiv preprint arXiv:2101.09108 (2021)

  14. Neumann, E.: Decision problems for linear recurrences involving arbitrary real numbers. Logical Methods in Computer Science (2021). https://arxiv.org/abs/2008.00583

  15. Pauly, A.: Representing measurement results. J. Univ. Comput. Sci. 15(6), 1280–1300 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Pauly, A.: On the topological aspects of the theory of represented spaces. Computability 5(2), 159–180 (2016). https://doi.org/10.3233/COM-150049

    Article  MathSciNet  MATH  Google Scholar 

  17. Pauly, A.: Effective local compactness and the hyperspace of located sets. arXiv preprint arXiv:1903.05490 (2019)

  18. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_24

    Chapter  Google Scholar 

  19. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural networks with provable guarantees. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 2651–2659, July 2018

    Google Scholar 

  20. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  21. Skliris, V., Norman, M.R.K., Sutton, P.J.: Real-time detection of unmodelled gravitational-wave transients using convolutional neural networks (2020). https://doi.org/10.48550/ARXIV.2009.14611

  22. Szegedy, C., et al.: Intriguing Properties of Neural Networks. arXiv preprint arXiv:1312.6199 (2013)

  23. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_22

    Chapter  Google Scholar 

  24. Zhang, J., Li, J.: Testing and verification of neural-network-based safety-critical control software: a systematic literature review. Inf. Softw. Technol. 123, 106296 (2020). https://www.sciencedirect.com/science/article/pii/S0950584920300471

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Roggenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Crook, T., Morgan, J., Pauly, A., Roggenbach, M. (2023). A Computability Perspective on (Verified) Machine Learning. In: Madeira, A., Martins, M.A. (eds) Recent Trends in Algebraic Development Techniques. WADT 2022. Lecture Notes in Computer Science, vol 13710. Springer, Cham. https://doi.org/10.1007/978-3-031-43345-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43345-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43344-3

  • Online ISBN: 978-3-031-43345-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics