Skip to main content

Towards Wait-and-Catch Routine of a Dynamic Swinging Object Using a Prototype Robotic Arm Manipulator

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2023)

Abstract

A robotic ball-catcher test demonstration built from a unique prototype manipulator is presented. Other than in previous work, the gripper catches a dynamic object moving within the workspace of the robot. The challenge is to be able to use a slow vision system yielding deficient measurements. We present theory for deriving the explicit (analytical) solution of the forward and inverse kinematics for the 5 degrees-of-freedom robotic manipulator. A dynamical model of the swinging object is used to predict its future trajectory, including the intercept point, algorithm tested in simulation and partly on the real experimental setup.

This research was partially supported by Flanders Make, the strategic research centre for the manufacturing industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bäuml, B., Wimböck, T., Hirzinger, G.: Kinematically optimal catching a flying ball with a hand-arm-system. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2592–2599, Taipei, Taiwan, October 2010

    Google Scholar 

  2. Chitta, S.: MoveIt!: an introduction. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625, pp. 3–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9_1

    Chapter  Google Scholar 

  3. De Preter, A.: Autonomous navigation for park maintenance and greenhouse horticulture. Robot driveability, ultra wideband positioning and calibration, semantic navigation. Ph.D. thesis, KU Leuven (2021)

    Google Scholar 

  4. Kallenberg, O.: Foundations of Modern Probability, 3rd edn. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61871-1

  5. Kizilkaya, B., Zhao, G., Sambo, Y.A., Li, L., Imran, M.A.: 5G-enabled education 4.0: enabling technologies, challenges, and solutions. IEEE Access 9, 166962–166969 (2021). https://doi.org/10.1109/ACCESS.2021.3136361

  6. Laganiere, R.: OpenCV 3 Computer Vision Application Programming Cookbook, 3rd edn. Packt Publishing, Birmingham (2017)

    Google Scholar 

  7. Lemons, D.S.: Perfect Form: Variational Principles, Methods, and Applications in Elementary Physics. Princeton University Press, Princeton (1997)

    Book  Google Scholar 

  8. Lewis, F.L., Xie, L., Popa, D.: Optimal and Robust Estimation. With an Introduction to Stochastic Control Theory, 2nd edn. CRC Press, New York (2008)

    Google Scholar 

  9. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (2nd Print). MIT Press, Cambridge (2006)

    Google Scholar 

  10. Ridolfi, M., et al.: Experimental evaluation of UWB indoor positioning for sport postures. Sensors 18(1), 168 (2018). https://doi.org/10.3390/s18010168

    Article  Google Scholar 

  11. Sato, M., Takahashi, A., Namiki, A.: Kinematically optimal catching a flying ball with a hand-arm-system. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9131–9136, Las Vegas, USA, October 2020

    Google Scholar 

  12. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, 2nd edn. Wiley, Hoboken (2020)

    Google Scholar 

  13. Stoev, J., Gillijns, S., Bartic, A., Symens, W.: Badminton playing robot-a multidisciplinary test case in mechatronics. IFAC Proc. Volumes 43(18), 725–731 (2010). https://doi.org/10.3182/20100913-3-US-2015.00028

    Article  Google Scholar 

  14. Teodorescu, C.S., Caplan, I., Eberle, H., Carlson, T.: Model-based sensor fusion and filtering for localization of a semi-autonomous robotic vehicle. In: European Control Conference, Rotterdam, The Netherlands, 29 June–2 July 2021

    Google Scholar 

  15. Teodorescu, C.S., Vandenplas, S., Depraetere, B., Anthonis, J., Steinhauser, A., Swevers, J.: A fast pick-and-place prototype robot: design and control. In: IEEE Multi-conference on Systems and Control, Buenos Aires, Argentina, September 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalin Stefan Teodorescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teodorescu, C.S., Vandenplas, S., Depraetere, B. (2023). Towards Wait-and-Catch Routine of a Dynamic Swinging Object Using a Prototype Robotic Arm Manipulator. In: Iida, F., Maiolino, P., Abdulali, A., Wang, M. (eds) Towards Autonomous Robotic Systems. TAROS 2023. Lecture Notes in Computer Science(), vol 14136. Springer, Cham. https://doi.org/10.1007/978-3-031-43360-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43360-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43359-7

  • Online ISBN: 978-3-031-43360-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics