Skip to main content

An Assessment of Self-supervised Learning for Data Efficient Potato Instance Segmentation

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2023)

Abstract

This work examines the viability of self-supervised learning approaches in the field of agri-robotics, specifically focusing on the segmentation of densely packed potato tubers in storage. The work assesses the impact of both the quantity and quality of data on self-supervised training, employing a limited set of both annotated and unannotated data. Mask R-CNN with a ResNet50 backbone is used for instance segmentation to evaluate self-supervised training performance. The results indicate that the self-supervised methods employed have a modest yet beneficial impact on the downstream task. A simpler approach yields more effective results with a larger dataset, whereas a more intricate method shows superior performance with a refined, smaller self-supervised dataset.

This work was supported by the Engineering and Physical Sciences Research Council [EP/S023917/1] as part of the AgriFoRwArdS CDT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT++: better real-time instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  3. Choi, T., Would, O., Salazar-Gomez, A., Cielniak, G.: Self-supervised representation learning for reliable robotic monitoring of fruit anomalies. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 2266–2272. IEEE (2022)

    Google Scholar 

  4. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  5. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  6. Güldenring, R., Nalpantidis, L.: Self-supervised contrastive learning on agricultural images. Comput. Electron. Agric. 191, 106510 (2021)

    Article  Google Scholar 

  7. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  9. Huang, M., Xu, G., Li, J., Huang, J.: A method for segmenting disease lesions of maize leaves in real time using attention YOLACT++. Agriculture 11(12), 1216 (2021)

    Article  Google Scholar 

  10. Ilteralp, M., Ariman, S., Aptoula, E.: A deep multitask semisupervised learning approach for chlorophyll-a retrieval from remote sensing images. Remote Sens. 14(1), 18 (2022)

    Article  Google Scholar 

  11. Jia, W., Tian, Y., Luo, R., Zhang, Z., Lian, J., Zheng, Y.: Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot. Comput. Electron. Agric. 172, 105380 (2020)

    Article  Google Scholar 

  12. Jia, W., et al.: FoveaMask: a fast and accurate deep learning model for green fruit instance segmentation. Comput. Electron. Agric. 191, 106488 (2021)

    Article  Google Scholar 

  13. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  14. Keshav, V., Delattre, F.: Self-supervised visual feature learning with curriculum. arXiv preprint arXiv:2001.05634 (2020)

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  16. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  18. Lin, X., et al.: Self-supervised leaf segmentation under complex lighting conditions. Pattern Recogn. 135, 109021 (2023)

    Article  Google Scholar 

  19. Liu, X., et al.: Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  20. Nakamura, K., Taniguchi, Y.: Detecting mounting behaviors of dairy cows by pre-training with pseudo images

    Google Scholar 

  21. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  22. Oliveira, L.F., Moreira, A.P., Silva, M.F.: Advances in agriculture robotics: a state-of-the-art review and challenges ahead. Robotics 10(2), 52 (2021)

    Article  Google Scholar 

  23. Van den Oord, A., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  24. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  25. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  27. Roggiolani, G., Sodano, M., Guadagnino, T., Magistri, F., Behley, J., Stachniss, C.: Hierarchical approach for joint semantic, plant instance, and leaf instance segmentation in the agricultural domain. arXiv preprint arXiv:2210.07879 (2022)

  28. Rong, J., Dai, G., Wang, P.: A peduncle detection method of tomato for autonomous harvesting. Complex Intell. Syst. 8(4), 2955–2969 (2022)

    Article  Google Scholar 

  29. Shen, L., et al.: Identifying veraison process of colored wine grapes in field conditions combining deep learning and image analysis. Comput. Electron. Agric. 200, 107268 (2022)

    Article  Google Scholar 

  30. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  31. Vayssade, J.A., Jones, G., Gée, C., Paoli, J.N.: Pixelwise instance segmentation of leaves in dense foliage. Comput. Electron. Agric. 195, 106797 (2022)

    Article  Google Scholar 

  32. Wang, X., Zhang, R., Kong, T., Li, L., Shen, C.: SOLOv2: dynamic and fast instance segmentation. Adv. Neural. Inf. Process. Syst. 33, 17721–17732 (2020)

    Google Scholar 

  33. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  34. Wicaksono, R.S.H., Septiandri, A.A., Jamal, A.: Human embryo classification using self-supervised learning. In: 2021 2nd International Conference on Artificial Intelligence and Data Sciences (AiDAS), pp. 1–5. IEEE (2021)

    Google Scholar 

  35. Yu, G., Luo, Y., Deng, R.: Automatic segmentation of golden pomfret based on fusion of multi-head self-attention and channel-attention mechanism. Comput. Electron. Agric. 202, 107369 (2022)

    Article  Google Scholar 

  36. Yu, Y., Zhang, K., Yang, L., Zhang, D.: Fruit detection for strawberry harvesting robot in non-structural environment based on mask-R-CNN. Comput. Electron. Agric. 163, 104846 (2019)

    Article  Google Scholar 

  37. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley Hurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hurst, B., Bellotto, N., Bosilj, P. (2023). An Assessment of Self-supervised Learning for Data Efficient Potato Instance Segmentation. In: Iida, F., Maiolino, P., Abdulali, A., Wang, M. (eds) Towards Autonomous Robotic Systems. TAROS 2023. Lecture Notes in Computer Science(), vol 14136. Springer, Cham. https://doi.org/10.1007/978-3-031-43360-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43360-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43359-7

  • Online ISBN: 978-3-031-43360-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics