Abstract
This work aims to formally ensure the safety of modern moving block systems. For this a proof model was developed in Event-B which captures several safety critical aspects. The new model identifies several key concepts, that are at the heart of the mathematical safety proof and which should later be at the heart of the safety case for a moving block system with trackside train detection. Some of the key concepts were inspired by earlier CBTC models and adapted for ETCS moving block, and a few novel key concepts were developed to deal safely with delays of train position reports and trackside train detection.
The invariants of the proof model have proven mathematically with the Rodin toolset, thereby establishing safety properties of the modelled system. The proof model can also be animated and visualised using the ProB validation tool. By necessity, the proof model abstracts away from irrelevant details and still has some restrictions in scope (such as linear topology). Nonetheless, even with current restrictions, the key concepts already proved valuable when reasoning about safety of moving block systems. In the article we also present our modelling and tooling methodology, outlining the importance of complementing proof with animation. We also explain the importance of inductive properties and argue that a train-centric approach is more promising for proof of a moving block system than a track-centric approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hybrid ERTMS/ETCS Level 3. Principles Ref: 16E042, Version: 1A, EEIG ERTMS Users Group, 123–133 Rue Froissart, 1040 Brussels, Belgium (2017)
Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cambridge (2010)
Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer, Heidelberg (2006). https://doi.org/10.1007/11901433_32
Biere, A., Kröning, D.: SAT-based model checking. In: Handbook of Model Checking, pp. 277–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_10
Borälv, A.: Case study: formal verification of a computerized railway interlocking. Formal Aspects Comput. 10(4), 338–360 (1998)
Breton, N., Fonteneau, Y.: S3: proving the safety of critical systems. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 231–242. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_17
Butler, M., et al.: Formal modelling techniques for efficient development of railway control products. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. Lecture Notes in Computer Science, vol. 10598, pp. 71–86. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4_5
Butler, M., et al.: The first twenty-five years of industrial use of the B-method. In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 189–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_8
Su, W., Chen, J., Khan, S.: Insulin pump: modular modeling of hybrid systems using event-B. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 403–408. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_31
Chaki, S., Gurfinkel, A.: BDD-based symbolic model checking. In: Handbook of Model Checking, pp. 219–245. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_8
Marques-Silva, J., Malik, S.: Propositional SAT solving. In: Handbook of Model Checking, pp. 247–275. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_9
Comptier, M., Deharbe, D., Perez, J.M., Mussat, L., Pierre, T., Sabatier, D.: Safety analysis of a CBTC system: a rigorous approach with event-B. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. Lecture Notes in Computer Science, vol. 10598, pp. 148–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4_10
Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J.M., Mutz, M.: Property-based modelling and validation of a CBTC zone controller in event-B. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 202–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_13
Dghaym, D., Dalvandi, M., Poppleton, M., Snook, C.F.: Formalising the hybrid ERTMS level 3 specification in iUML-B and event-B. Int. J. Softw. Tools Technol. Transf. 22(3), 297–313 (2020)
Dollé, D., Essamé, D., Falampin, J.: B dans le transport ferroviaire. L’expérience de Siemens transportation systems. Technique et Science Informatiques, 22(1), 11–32 (2003)
Essamé, D., Dollé, D.: B in large-scale projects: the Canarsie line CBTC experience. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254. Springer, Heidelberg (2006). https://doi.org/10.1007/11955757_21
Fantechi, A., Lecomte, T., Romanovsky, A.B.: (eds.) Proceedings RSSRail 2017, LNCS 10598. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4
Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_15
Fotso, S.J.T., Frappier, M., Laleau, R., Mammar, A.: Modeling the hybrid ERTMS/ETCS level 3 standard using a formal requirements engineering approach. Int. J. Softw. Tools Technol. Transf. 22(3), 349–363 (2020)
Fuchs, N.E.: Specifications are (preferably) executable. Softw. Eng. J. 7(5), 323–334 (1992)
Hansen, D., et al.: Using a formal B model at runtime in a demonstration of the ETCS hybrid level 3 concept with real trains. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 292–306. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_20
Haxthausen, A.E., Nguyen, H.N., Roggenbach, M.: Comparing formal verification approaches of interlocking systems. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 160–177. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_12
Hayes, I., Jones, C.B.: Specifications are not (necessarily) executable. Softw. Eng. J. 4(6), 330–338 (1989)
Hoang, T.S., Butler, M., Reichl, K.: The hybrid ERTMS/ETCS level 3 case study. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 251–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_17
Holzmann, G.J.: Explicit-state model checking. In: Handbook of Model Checking, pp. 153–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_5
Krings, S., Bendisposto, J., Leuschel, M.: From failure to proof: the ProB disprover for B and event-B. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 199–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-0_15
Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley, Boston (2002)
Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway interlocking - compositional approach with OCRA. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_10
Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method. STTT 10(2), 185–203 (2008)
Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification for large scale B models with ProB. Formal Asp. Comput. 23(6), 683–709 (2011)
Leuschel, M., Mutz, M., Werth, M.: Modelling and validating an automotive system in classical B and event-B. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 335–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6_27
Mammar, A., Frappier, M., Fotso, S.J.T., Laleau, R.: A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard. Int. J. Softw. Tools Technol. Transf. 22(3), 333–347 (2020)
Mazzanti, F., Basile, D.: A formal methods demonstrator for railways. ERCIM News 121, 2020 (2020)
Sabatier, D.: Using formal proof and B method at system level for industrial projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_2
ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the railways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_46
Werth, M., Leuschel, M.: VisB: a lightweight tool to visualize formal models with SVG graphics. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 260–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6_21
X2Rail-3. Advanced signalling, automation and communication system (IP2 and IP5). Deliverable D4.2: Moving block specifications. Part 2 - System definition. Technical report (2020). https://projects.shift2rail.org
Acknowledgement
We thank anonymous referees for their useful feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Leuschel, M., Nayeri, N. (2023). Modelling, Visualisation and Proof of an ETCS Level 3 Moving Block System. In: Milius, B., Collart-Dutilleul, S., Lecomte, T. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2023. Lecture Notes in Computer Science, vol 14198. Springer, Cham. https://doi.org/10.1007/978-3-031-43366-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-43366-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43365-8
Online ISBN: 978-3-031-43366-5
eBook Packages: Computer ScienceComputer Science (R0)