Abstract
In the future, fully automated trains can play a vital role in improving performance of the railway system. Although technologies exist that make driverless train operation already possible, certification of new technology is an open issue. Building on experiences from the automotive domain, we expect that development and certification of future railway technology will be based on a scenario-driven process supported by simulation technology. This work identifies a preliminary list of relevant scenario aspects and phenomena that simulators must be able to virtually recreate in order to completely support this process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note, that ATO can be safety critical in some ETCS modes, e.g. “Shunting” or “On Sight”.
- 2.
A task is understood (in the current, not highly automated state) as a requirement for railroad employees based on the regulations.
- 3.
Using the formula from [10], the number of required test kilometers is \(n = \frac{\ln (1-C)}{\ln (1-F)}\) with confidence \(C=0.95\) and failure rate \(F=1.3 \cdot 10^{-8}\) (fatalities per kilometer).
- 4.
They can change their sections and can be present in more than one sections at the same time.
- 5.
Some of the train driver tasks would be taken over by the newly created position of a train operator (TO), who would not ride on the train [50].
References
Koopman, P., Wagner, M.: Toward a framework for highly automated vehicle safety validation. In: SAE Technical Paper Series. SAE Technical Paper Series, SAE International400 Commonwealth Drive, Warrendale, PA, United States (2018). https://doi.org/10.4271/2018-01-1071.
Flamm, L., Meirich, C., Meyer zu Hörste, M., Hagemeyer, F.W., Preuss, M.: Regulatorischer anpassungsbedarf für das automatische fahren im bahnbetrieb (01) (2019)
Hagemeyer, F., Preuß, M., Meyer zu Hörste, M., Meirich, C., Flamm, L.: Automatisiertes Fahren auf der Schiene. Springer Fachmedien Wiesbaden (2021). https://doi.org/10.1007/978-3-658-32328-8
European Commission: Proposal for a regulation of the European parliament and of the council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts (2021)
Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-based safety assessment of automated vehicles 8, 87456–87477 (2020). https://doi.org/10.1109/ACCESS.2020.2993730
Leitner, A.: Enable-s3: Project introduction. In: Leitner, A., Watzenig, D., Ibanez-Guzman, J. (eds.) Validation and Verification of Automated Systems. Springer, Cham(2020)
Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 982–988. IEEE (2015). https://doi.org/10.1109/ITSC.2015.164
Kalisvaart, S., Slavik, Z., Op den Camp, O.: Using scenarios in safety validation of automated systems. In: Leitner, A., Watzenig, D., Ibanez-Guzman, J. (eds.) Validation and Verification of Automated Systems, pp. 27–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14628-3_5
Damm, W., Möhlmann, E., Rakow, A.: Traffic sequence charts for the ENABLE-S\(_{3}\) test architecture. In: Leitner, A., Watzenig, D., Ibanez-Guzman, J. (eds.) Validation and Verification of Automated Systems, pp. 45–60. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14628-3_6
Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A Policy Pract. 94, 182–193 (2016). https://doi.org/10.1016/j.tra.2016.09.010
Evans, A.W.: Fatal train accidents on europe’s railways: 1980–2009 43(1), 391–401 (2011). https://doi.org/10.1016/j.aap.2010.09.009. comparative Study Journal Article
Hauer, F., Schmidt, T., Holzmuller, B., Pretschner, A.: Did we test all scenarios for automated and autonomous driving systems? (2019). https://doi.org/10.1109/ITSC.2019.8917326
Jäger, B., Meyer zu Hörste, M., Hesse, T., Köster, F.: Automated driving - can rail traffic learn from road traffic? (140) (2016)
ERTMS/ETCS: Safety requirements for the technical interoperability of etcs in levels 1 & 2
Schröder, J., Gonçalves, C.A., Dickgießer, B., Knollmann, V.: Digital s-bahn hamburg - germany’s first implementation of ato over etcs, May 2021
ERTMS Users Group: Ertms/ato operational scenarios. Document version 1, 11 (2022)
Tagiew, R., Leinhos, D., von der Haar, H., Klotz, C., Sprute, D., Ziehn, J., Schmelter, A., Witte, S., Klasek, P.: Onboard sensor systems for automatic train operation. In: Marrone, S., de Sanctis, M., Kocsis, I., Adler, R., Hawkins, R., Schleiß, P., Nardone, R., Flammini, F., Vittorini, V. (eds.) Dependable Computing - EDCC 2022 Workshops, Communications in Computer and Information Science, vol. 1656, pp. 139–150. Springer International Publishing (2022). https://doi.org/10.1007/978-3-031-16245-9_11
Wolf, R., Langer, H.G.: Goa4-readiness - challanges for future rail vehicles 146 (2022)
Underwriters Laboratories: ANSI/UL 4600: Evaluation of autonomous products (2022)
Peleska, J., Haxthausen, A.E., Lecomte, T.: Standardisation considerations for autonomous train control. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation. Practice. LNCS, vol. 13704, pp. 286–307. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19762-8_22
Grossmann, J., Grube, N., Kharma, S., Knoblauch, D., Krajewski, R., Kucheiko, M., Wiesbrock, H.W.: Test and training data generation for object recognition in the railway domain. In: Masci, P., Bernardeschi, C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds.) Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops. LNCS, vol. 13765, pp. 5–16. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26236-4_1
Scholtes, M., et al.: 6-layer model for a structured description and categorization of urban traffic and environment 9, 59131–59147 (2021). https://doi.org/10.1109/ACCESS.2021.3072739
Nash, A., Huerlimann, D., Schuette, J., Krauss, V.P.: Railml - a standard data interface for railroad applications. In: Vorticity and Turbulence Effects in Fluid Structure Interactions, WIT Transactions on State of the Art in Science and Engineering, vol. 1, pp. 3–10. WIT Press (2010). https://doi.org/10.2495/978-1-84564-500-7/01
Hölscher, C.: Zusi bahnsimulatoren (2023). https://www.zusi.de. Accessed 11 Apr 2023
HENSOLDT: Simsphere train (2023). https://www.hensoldt.net/stories/training-train-drivers-etcs-app-by-hensoldt/. Accessed 11 Apr 2023
Müller Systemtechnik: Mst triebfahrzeug simulator (2023). https://muellersystemtechnik.de/mst-triebfahrzeug-simulator. Accessed 11 Apr 2023
Deutsches Zentrum für Luft- und Raumfahrt e.V.: Railsite (rail simulation and testing) 2(A88) (2016). https://doi.org/10.17815/jlsrf-2-144
Open Rails (2023). https://www.openrails.org/. Accessed 11 Apr 2023
D’Amico, G., et al.: Trainsim: A railway simulation framework for lidar and camera dataset generation (28022023), under review
Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and validation of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1821–1827. IEEE (2018). https://doi.org/10.1109/IVS.2018.8500406
Neurohr, C., Westhofen, L., Henning, T., de Graaff, T., Mohlmann, E., Bode, E.: Fundamental considerations around scenario-based testing for automated driving. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 121–127. IEEE (2020). https://doi.org/10.1109/IV47402.2020.9304823
Neurohr, C., Westhofen, L., Butz, M., Bollmann, M.H., Eberle, U., Galbas, R.: Criticality analysis for the verification and validation of automated vehicles 9, 18016–18041 (2021). https://doi.org/10.1109/ACCESS.2021.3053159
Wachenfeld, W., Winner, H.: Die freigabe des autonomen fahrens. In: (ed.) Autonomes Fahren, pp. 439–464. Springer, Heidelberg (2015)
Becker, J.S.: Simulation of abstract scenarios: towards automated tooling in criticality analysis (2022). https://elib.dlr.de/186897/, februar
Westhofen, L., Stierand, I., Becker, J.S., Möhlmann, E., Hagemann, W.: Towards a congruent interpretation of traffic rules for automated driving: Experiences and challenges. In: Borges, G., Satoh, K., Schweighofer, E. (eds.) Proceedings of the International Workshop on Methodologies for Translating Legal Norms into Formal Representations (LN2FR 2022) in association with 35th International Conference on Legal Knowledge and Information Systems (JURIX 2022) (2022)
ASAM: Openx ontology (2023), accessed Mai 02, 2023. https://www.asam.net/standards/asam-openxontology
International Organization for Standardization: ISO/DIS 34501:2022: Road vehicles - test scenarios for automated driving systems - vocabulary (2022)
International Organization for Standardization: ISO/DIS 34502:2022: Road vehicles - test scenarios for automated driving systems - scenario based safety evaluation framework (2022)
International Organization for Standardization: ISO/DIS 34503: Road vehicles - test scenarios for automated driving systems - taxonomy for operational design domain (2023), under development
International Organization for Standardization: ISO/DIS 34504: Road vehicles - test scenarios for automated driving systems - scenario categorization (2023), under development
Deutsche Bahn AG: Fahrdienstvorschrift richtlinie 408.21-27: Züge fahren (2015)
Deutsche Bahn AG: Fahrdienstvorschrift richtlinie 301: Signalbuch (2019)
Bundesstelle für Eisenbahnunfalluntersuchung: Untersuchungsberichte. https://www.eisenbahn-unfalluntersuchung.de. Accessed Mai 02, 2023
Bundesstelle für Eisenbahnunfalluntersuchung: Daten zu abschließend untersuchten gefährlichen ereignissen im eisenbahnbetrieb. https://www.eisenbahn-unfalluntersuchung.de/EUB/DE/Publikationen/Open_Data/Open_Data_node.html. Accessed Mai 02, 2023
des Bundes (SUB), S.: Untersuchungsberichte. https://www.bmk.gv.at/ministerium/sub/schiene/berichte.html. Accessed Mai 02, 2023
Babisch, S., Neurohr, C., Westhofen, L., Schoenawa, S., Liers, H.: Leveraging the gidas database for the criticality analysis of automated driving systems 2023, 1–25 (2023). https://doi.org/10.1155/2023/1349269
Damm, W., Möhlmann, E., Rakow, A.: A scenario discovery process based on traffic sequence charts. In: Leitner, A., Watzenig, D., Ibanez-Guzman, J. (eds.) Validation and Verification of Automated Systems, pp. 61–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14628-3_7
Gerd Tasler, V.K.: Einführung des hochautomatisierten fahrens - auf dem weg zum vollautomatischen bahnbetrieb, June 2018
Brandenburger, N., Hörmann, H.J., Stelling, D., Naumann, A.: Tasks, skills, and competencies of future high-speed train drivers 231(10), 1115–1122 (2017). https://doi.org/10.1177/0954409716676509
Brandenburger, N., Naumann, A., Grippenkoven, J., Jipp, M.: Der train operator (2017)
Fendrich, L., Fengler, W.: Handbuch Eisenbahninfrastruktur. Springer, Berlin Heidelberg (2019). https://doi.org/10.1007/978-3-662-56062-4
European Union Agency for Railways: Etcs driver’s handbook (2019). https://www.era.europa.eu/system/files/2022-11/Generic%20ETCS%20Drivers%20Handbook.docx
Bonetto, E.: D2.1 modelling of the moving block signalling system (2019)
Westhofen, L., et al.: Criticality metrics for automated driving: a review and suitability analysis of the state of the art (2022). https://doi.org/10.1007/s11831-022-09788-7, pII: 9788
Hayward, J.C.: Near-miss determination through use of a scale of danger. Highway Research Record (1972)
Allen, B.L., Shin, B.T., Cooper, P.J.: Analysis of traffic conflicts and collisions. Transportation Research Record (1978)
Jansson, J.: Collision avoidance theory: With application to automotive collision mitigation. Ph.D. thesis, Linköping University (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wild, M., Becker, J.S., Ehmen, G., Möhlmann, E. (2023). Towards Scenario-Based Certification of Highly Automated Railway Systems. In: Milius, B., Collart-Dutilleul, S., Lecomte, T. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2023. Lecture Notes in Computer Science, vol 14198. Springer, Cham. https://doi.org/10.1007/978-3-031-43366-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-43366-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43365-8
Online ISBN: 978-3-031-43366-5
eBook Packages: Computer ScienceComputer Science (R0)