Skip to main content

Towards Scenario-Based Certification of Highly Automated Railway Systems

  • Conference paper
  • First Online:
Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification (RSSRail 2023)

Abstract

In the future, fully automated trains can play a vital role in improving performance of the railway system. Although technologies exist that make driverless train operation already possible, certification of new technology is an open issue. Building on experiences from the automotive domain, we expect that development and certification of future railway technology will be based on a scenario-driven process supported by simulation technology. This work identifies a preliminary list of relevant scenario aspects and phenomena that simulators must be able to virtually recreate in order to completely support this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note, that ATO can be safety critical in some ETCS modes, e.g. “Shunting” or “On Sight”.

  2. 2.

    A task is understood (in the current, not highly automated state) as a requirement for railroad employees based on the regulations.

  3. 3.

    Using the formula from [10], the number of required test kilometers is \(n = \frac{\ln (1-C)}{\ln (1-F)}\) with confidence \(C=0.95\) and failure rate \(F=1.3 \cdot 10^{-8}\) (fatalities per kilometer).

  4. 4.

    They can change their sections and can be present in more than one sections at the same time.

  5. 5.

    Some of the train driver tasks would be taken over by the newly created position of a train operator (TO), who would not ride on the train [50].

References

  1. Koopman, P., Wagner, M.: Toward a framework for highly automated vehicle safety validation. In: SAE Technical Paper Series. SAE Technical Paper Series, SAE International400 Commonwealth Drive, Warrendale, PA, United States (2018). https://doi.org/10.4271/2018-01-1071.

  2. Flamm, L., Meirich, C., Meyer zu Hörste, M., Hagemeyer, F.W., Preuss, M.: Regulatorischer anpassungsbedarf für das automatische fahren im bahnbetrieb (01) (2019)

    Google Scholar 

  3. Hagemeyer, F., Preuß, M., Meyer zu Hörste, M., Meirich, C., Flamm, L.: Automatisiertes Fahren auf der Schiene. Springer Fachmedien Wiesbaden (2021). https://doi.org/10.1007/978-3-658-32328-8

  4. European Commission: Proposal for a regulation of the European parliament and of the council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts (2021)

    Google Scholar 

  5. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-based safety assessment of automated vehicles 8, 87456–87477 (2020). https://doi.org/10.1109/ACCESS.2020.2993730

    Article  Google Scholar 

  6. Leitner, A.: Enable-s3: Project introduction. In: Leitner, A., Watzenig, D., Ibanez-Guzman, J. (eds.) Validation and Verification of Automated Systems. Springer, Cham(2020)

    Google Scholar 

  7. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 982–988. IEEE (2015). https://doi.org/10.1109/ITSC.2015.164

  8. Kalisvaart, S., Slavik, Z., Op den Camp, O.: Using scenarios in safety validation of automated systems. In: Leitner, A., Watzenig, D., Ibanez-Guzman, J. (eds.) Validation and Verification of Automated Systems, pp. 27–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14628-3_5

    Chapter  Google Scholar 

  9. Damm, W., Möhlmann, E., Rakow, A.: Traffic sequence charts for the ENABLE-S\(_{3}\) test architecture. In: Leitner, A., Watzenig, D., Ibanez-Guzman, J. (eds.) Validation and Verification of Automated Systems, pp. 45–60. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14628-3_6

    Chapter  Google Scholar 

  10. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A Policy Pract. 94, 182–193 (2016). https://doi.org/10.1016/j.tra.2016.09.010

    Article  Google Scholar 

  11. Evans, A.W.: Fatal train accidents on europe’s railways: 1980–2009 43(1), 391–401 (2011). https://doi.org/10.1016/j.aap.2010.09.009. comparative Study Journal Article

  12. Hauer, F., Schmidt, T., Holzmuller, B., Pretschner, A.: Did we test all scenarios for automated and autonomous driving systems? (2019). https://doi.org/10.1109/ITSC.2019.8917326

  13. Jäger, B., Meyer zu Hörste, M., Hesse, T., Köster, F.: Automated driving - can rail traffic learn from road traffic? (140) (2016)

    Google Scholar 

  14. ERTMS/ETCS: Safety requirements for the technical interoperability of etcs in levels 1 & 2

    Google Scholar 

  15. Schröder, J., Gonçalves, C.A., Dickgießer, B., Knollmann, V.: Digital s-bahn hamburg - germany’s first implementation of ato over etcs, May 2021

    Google Scholar 

  16. ERTMS Users Group: Ertms/ato operational scenarios. Document version 1, 11 (2022)

    Google Scholar 

  17. Tagiew, R., Leinhos, D., von der Haar, H., Klotz, C., Sprute, D., Ziehn, J., Schmelter, A., Witte, S., Klasek, P.: Onboard sensor systems for automatic train operation. In: Marrone, S., de Sanctis, M., Kocsis, I., Adler, R., Hawkins, R., Schleiß, P., Nardone, R., Flammini, F., Vittorini, V. (eds.) Dependable Computing - EDCC 2022 Workshops, Communications in Computer and Information Science, vol. 1656, pp. 139–150. Springer International Publishing (2022). https://doi.org/10.1007/978-3-031-16245-9_11

  18. Wolf, R., Langer, H.G.: Goa4-readiness - challanges for future rail vehicles 146 (2022)

    Google Scholar 

  19. Underwriters Laboratories: ANSI/UL 4600: Evaluation of autonomous products (2022)

    Google Scholar 

  20. Peleska, J., Haxthausen, A.E., Lecomte, T.: Standardisation considerations for autonomous train control. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation. Practice. LNCS, vol. 13704, pp. 286–307. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19762-8_22

  21. Grossmann, J., Grube, N., Kharma, S., Knoblauch, D., Krajewski, R., Kucheiko, M., Wiesbrock, H.W.: Test and training data generation for object recognition in the railway domain. In: Masci, P., Bernardeschi, C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds.) Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops. LNCS, vol. 13765, pp. 5–16. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26236-4_1

  22. Scholtes, M., et al.: 6-layer model for a structured description and categorization of urban traffic and environment 9, 59131–59147 (2021). https://doi.org/10.1109/ACCESS.2021.3072739

  23. Nash, A., Huerlimann, D., Schuette, J., Krauss, V.P.: Railml - a standard data interface for railroad applications. In: Vorticity and Turbulence Effects in Fluid Structure Interactions, WIT Transactions on State of the Art in Science and Engineering, vol. 1, pp. 3–10. WIT Press (2010). https://doi.org/10.2495/978-1-84564-500-7/01

  24. Hölscher, C.: Zusi bahnsimulatoren (2023). https://www.zusi.de. Accessed 11 Apr 2023

  25. HENSOLDT: Simsphere train (2023). https://www.hensoldt.net/stories/training-train-drivers-etcs-app-by-hensoldt/. Accessed 11 Apr 2023

  26. Müller Systemtechnik: Mst triebfahrzeug simulator (2023). https://muellersystemtechnik.de/mst-triebfahrzeug-simulator. Accessed 11 Apr 2023

  27. Deutsches Zentrum für Luft- und Raumfahrt e.V.: Railsite (rail simulation and testing) 2(A88) (2016). https://doi.org/10.17815/jlsrf-2-144

  28. Open Rails (2023). https://www.openrails.org/. Accessed 11 Apr 2023

  29. D’Amico, G., et al.: Trainsim: A railway simulation framework for lidar and camera dataset generation (28022023), under review

    Google Scholar 

  30. Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and validation of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1821–1827. IEEE (2018). https://doi.org/10.1109/IVS.2018.8500406

  31. Neurohr, C., Westhofen, L., Henning, T., de Graaff, T., Mohlmann, E., Bode, E.: Fundamental considerations around scenario-based testing for automated driving. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 121–127. IEEE (2020). https://doi.org/10.1109/IV47402.2020.9304823

  32. Neurohr, C., Westhofen, L., Butz, M., Bollmann, M.H., Eberle, U., Galbas, R.: Criticality analysis for the verification and validation of automated vehicles 9, 18016–18041 (2021). https://doi.org/10.1109/ACCESS.2021.3053159

    Article  Google Scholar 

  33. Wachenfeld, W., Winner, H.: Die freigabe des autonomen fahrens. In: (ed.) Autonomes Fahren, pp. 439–464. Springer, Heidelberg (2015)

    Google Scholar 

  34. Becker, J.S.: Simulation of abstract scenarios: towards automated tooling in criticality analysis (2022). https://elib.dlr.de/186897/, februar

  35. Westhofen, L., Stierand, I., Becker, J.S., Möhlmann, E., Hagemann, W.: Towards a congruent interpretation of traffic rules for automated driving: Experiences and challenges. In: Borges, G., Satoh, K., Schweighofer, E. (eds.) Proceedings of the International Workshop on Methodologies for Translating Legal Norms into Formal Representations (LN2FR 2022) in association with 35th International Conference on Legal Knowledge and Information Systems (JURIX 2022) (2022)

    Google Scholar 

  36. ASAM: Openx ontology (2023), accessed Mai 02, 2023. https://www.asam.net/standards/asam-openxontology

  37. International Organization for Standardization: ISO/DIS 34501:2022: Road vehicles - test scenarios for automated driving systems - vocabulary (2022)

    Google Scholar 

  38. International Organization for Standardization: ISO/DIS 34502:2022: Road vehicles - test scenarios for automated driving systems - scenario based safety evaluation framework (2022)

    Google Scholar 

  39. International Organization for Standardization: ISO/DIS 34503: Road vehicles - test scenarios for automated driving systems - taxonomy for operational design domain (2023), under development

    Google Scholar 

  40. International Organization for Standardization: ISO/DIS 34504: Road vehicles - test scenarios for automated driving systems - scenario categorization (2023), under development

    Google Scholar 

  41. Deutsche Bahn AG: Fahrdienstvorschrift richtlinie 408.21-27: Züge fahren (2015)

    Google Scholar 

  42. Deutsche Bahn AG: Fahrdienstvorschrift richtlinie 301: Signalbuch (2019)

    Google Scholar 

  43. Bundesstelle für Eisenbahnunfalluntersuchung: Untersuchungsberichte. https://www.eisenbahn-unfalluntersuchung.de. Accessed Mai 02, 2023

  44. Bundesstelle für Eisenbahnunfalluntersuchung: Daten zu abschließend untersuchten gefährlichen ereignissen im eisenbahnbetrieb. https://www.eisenbahn-unfalluntersuchung.de/EUB/DE/Publikationen/Open_Data/Open_Data_node.html. Accessed Mai 02, 2023

  45. des Bundes (SUB), S.: Untersuchungsberichte. https://www.bmk.gv.at/ministerium/sub/schiene/berichte.html. Accessed Mai 02, 2023

  46. Babisch, S., Neurohr, C., Westhofen, L., Schoenawa, S., Liers, H.: Leveraging the gidas database for the criticality analysis of automated driving systems 2023, 1–25 (2023). https://doi.org/10.1155/2023/1349269

    Article  Google Scholar 

  47. Damm, W., Möhlmann, E., Rakow, A.: A scenario discovery process based on traffic sequence charts. In: Leitner, A., Watzenig, D., Ibanez-Guzman, J. (eds.) Validation and Verification of Automated Systems, pp. 61–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14628-3_7

    Chapter  Google Scholar 

  48. Gerd Tasler, V.K.: Einführung des hochautomatisierten fahrens - auf dem weg zum vollautomatischen bahnbetrieb, June 2018

    Google Scholar 

  49. Brandenburger, N., Hörmann, H.J., Stelling, D., Naumann, A.: Tasks, skills, and competencies of future high-speed train drivers 231(10), 1115–1122 (2017). https://doi.org/10.1177/0954409716676509

  50. Brandenburger, N., Naumann, A., Grippenkoven, J., Jipp, M.: Der train operator (2017)

    Google Scholar 

  51. Fendrich, L., Fengler, W.: Handbuch Eisenbahninfrastruktur. Springer, Berlin Heidelberg (2019). https://doi.org/10.1007/978-3-662-56062-4

  52. European Union Agency for Railways: Etcs driver’s handbook (2019). https://www.era.europa.eu/system/files/2022-11/Generic%20ETCS%20Drivers%20Handbook.docx

  53. Bonetto, E.: D2.1 modelling of the moving block signalling system (2019)

    Google Scholar 

  54. Westhofen, L., et al.: Criticality metrics for automated driving: a review and suitability analysis of the state of the art (2022). https://doi.org/10.1007/s11831-022-09788-7, pII: 9788

  55. Hayward, J.C.: Near-miss determination through use of a scale of danger. Highway Research Record (1972)

    Google Scholar 

  56. Allen, B.L., Shin, B.T., Cooper, P.J.: Analysis of traffic conflicts and collisions. Transportation Research Record (1978)

    Google Scholar 

  57. Jansson, J.: Collision avoidance theory: With application to automotive collision mitigation. Ph.D. thesis, Linköping University (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wild, M., Becker, J.S., Ehmen, G., Möhlmann, E. (2023). Towards Scenario-Based Certification of Highly Automated Railway Systems. In: Milius, B., Collart-Dutilleul, S., Lecomte, T. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2023. Lecture Notes in Computer Science, vol 14198. Springer, Cham. https://doi.org/10.1007/978-3-031-43366-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43366-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43365-8

  • Online ISBN: 978-3-031-43366-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics