Abstract
The research project KI-LOK aims to develop a certification methodology for incorporating AI components into rail vehicles. In this work, we study how to safely incorporate an AI for obstacle detection into an ATO (automatic train operation) system for shunting movements. To analyse the safety of our system we present a formal B model comprising the steering and AI perceptions subsystems as well as the shunting yard environment. Classical model checking is applied to ensure that the complete system is safe under certain assumptions. We use SimB to simulate various scenarios and estimate the likelihood of certain errors when the AI makes mistakes.
This research is part of the KI-LOK project funded by the “Bundesministerium für Wirtschaft und Energie”; grant # 19/21007E.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
But we are also investigating systems with two cameras or with LiDAR sensors.
- 3.
- 4.
- 5.
- 6.
We hope to obtain such precise figures from industrial partners in our project.
- 7.
For now, we define that the probability of a safe drive from 347a to 855b must be \(\ge \) 99.9%.
- 8.
For now, we define that the probability of achieving the mission order must be \(\ge \) 99.9%.
- 9.
The models can be found at https://github.com/hhu-stups/kilok_shunting_model/tree/14c2ecdb6e32ba593cac64e5868c94773139b391.
- 10.
Version: 1.12.0-final (fef4b935b59d76e353ab67230f6206b15f903f4b, 05.04.2023).
- 11.
Some of the traces can be accessed as an interactive HTML document at
- 12.
References
Abrial, J., Hoare, A.: The B-Book: Assigning Programs to Meanings. Cambridge University Press (2005)
Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press (2010)
ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France (2016). https://www.atelierb.eu/
Comptier, M., Déharbe, D., Perez, J.M., Mussat, L., Thibaut, P., Sabatier, D.: Safety analysis of a CBTC system: a rigorous approach with Event-B. In Proceedings RSSRail, LNCS, vol. 10598, pp. 148–159 (2017)
Comptier, M., Leuschel, M., Mejia, L., Perez, J.M., Mutz, M.: Property-based modelling and validation of a CBTC zone controller in Event-B. In: Proceedings RSSRail. LNCS, vol. 11495, pp. 202–212 (2019)
Cummings, M.L.: Rethinking the maturity of artificial intelligence in safety-critical settings. AI Mag. 42(1), 6–15 (2021)
dos Santos, C.F.G., Papa, J.P.: Avoiding overfitting: a survey on regularization methods for convolutional neural networks. CoRR, abs/2201.03299 (2022)
A. R. Fayjie, S. Hossain, D. Oualid, and D.-J. Lee. Driverless car: Autonomous driving using deep reinforcement learning in urban environment. In 2018 15th international conference on ubiquitous robots (ur), pages 896–901. IEEE, 2018
K. P. F.R.S. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2(11), 559–572 (1901)
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: Ai2: safety and robustness certification of neural networks with abstract interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2018)
Hansen, D., Leuschel, M., Schneider, D., Krings, S., Körner, P., Naulin, T., Nayeri, N., Skowron, F.: Using a formal B model at runtime in a demonstration of the ETCS hybrid level 3 concept with real trains. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 292–306. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_20
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1
Huang, X., Ruan, W., Tang, Q., Zhao, X.: Bridging formal methods and machine learning with global optimisation. In: Riesco, A., Zhang, M. (eds) ICFEM 2022. LNCS, vol. 13478, pp. 1–19. Springer, Cham (2022)
Itseez. Open source computer vision library (2015). https://github.com/itseez/opencv
Jackson, D., et al.: Certified control: An architecture for verifiable safety of autonomous vehicles. CoRR, abs/2104.06178 (2021)
Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Proceedings CAV, LNCS, vol. 10426, pp. 97–117 (2017)
Leurent, E.: An environment for autonomous driving decision-making (2018). https://github.com/eleurent/highway-env
Leuschel, M.: Operation caching and state compression for model checking of high-level models - how to have your cake and eat it. In: Proceedings iFM. LNCS, vol. 13274, pp. 129–145 (2022)
Leuschel, M., Butler, M.: ProB: a model checker for B. In: Proceedings FME, LNCS, vol. 2805, pp. 855–874 (2003)
Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method. STTT 10(2), 185–203 (2008)
Nonami, K., Kendoul, F., Suzuki, S., Wang, W., Nakazawa, D.: Autonomous flying robots: unmanned aerial vehicles and micro aerial vehicles. Springer Science & Business Media (2010)
Peleska, J., Haxthausen, A.E., Lecomte, T.: Standardisation considerations for autonomous train control. In: Proceedings ISoLA. LNCS, vol. 13704, pp. 286–307 (2022)
Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You Only Look Once: Unified, Real-Time Object Detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788, Los Alamitos, CA, USA, June 2016. IEEE Computer Society
Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural networks with provable guarantees. In: Proceedings IJCAI International Joint Conferences on Artificial Intelligence Organization, pp. 2651–2659, 7 2018
Sabatier, D.: Using formal proof and B method at system level for industrial projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_2
Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT line 7 (flushing) modernization project. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 369–372. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30885-7_34
Seshia, S.A., Sadigh, D., Sastry, S.S.: Toward verified artificial intelligence. Commun. ACM 65(7), 46–55 (2022)
Stock, S., Vu, F., Geleßus, D., Leuschel, M., Mashkoor, A., Egyed, A.: Validation by abstraction and refinement. In: Proceedings ABZ. LNCS, vol. 14010, pp. 160–178 (2023.) https://doi.org/10.1007/978-3-031-33163-3_12
Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)
Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., Kroening, D.: Concolic testing for deep neural networks. CoRR, abs/1805.00089 (2018)
Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)
Vu, F., Leuschel, M., Mashkoor, A.: Validation of formal models by timed probabilistic simulation. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709, pp. 81–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8_6
Werth, M., Leuschel, M.: VisB: a lightweight tool to visualize formal models with SVG graphics. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 260–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6_21
Acknowledgements
Infrastructure for model checking benchmarks was provided by the “Centre for Information and Media Technology” (ZIM) at the University of Düsseldorf (Germany). We thank anonymous reviewers for their very helpful comments and links to related work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gruteser, J., Geleßus, D., Leuschel, M., Roßbach, J., Vu, F. (2023). A Formal Model of Train Control with AI-Based Obstacle Detection. In: Milius, B., Collart-Dutilleul, S., Lecomte, T. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2023. Lecture Notes in Computer Science, vol 14198. Springer, Cham. https://doi.org/10.1007/978-3-031-43366-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-43366-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43365-8
Online ISBN: 978-3-031-43366-5
eBook Packages: Computer ScienceComputer Science (R0)