Skip to main content

A New Width Parameter of Graphs Based on Edge Cuts: \(\alpha \)-Edge-Crossing Width

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2023)

Abstract

We introduce graph width parameters, called \(\alpha \)-edge-crossing width and edge-crossing width. These are defined in terms of the number of edges crossing a bag of a tree-cut decomposition. They are motivated by edge-cut width, recently introduced by Brand et al. (WG 2022). We show that edge-crossing width is equivalent to the known parameter tree-partition-width. On the other hand, \(\alpha \)-edge-crossing width is a new parameter; tree-cut width and \(\alpha \)-edge-crossing width are incomparable, and they both lie between tree-partition-width and edge-cut width.

We provide an algorithm that, for a given n-vertex graph G and integers k and \(\alpha \), in time \(2^{O((\alpha +k)\log (\alpha +k))}n^2\) either outputs a tree-cut decomposition certifying that the \(\alpha \)-edge-crossing width of G is at most \(2\alpha ^2+5k\) or confirms that the \(\alpha \)-edge-crossing width of G is more than k. As applications, for every fixed \(\alpha \), we obtain FPT algorithms for the List Coloring and Precoloring Extension problems parameterized by \(\alpha \)-edge-crossing width. They were known to be W[1]-hard parameterized by tree-partition-width, and FPT parameterized by edge-cut width, and we close the complexity gap between these two parameters.

A full version of the paper is available at https://arxiv.org/abs/2302.04624.

Y. Chang, O. Kwon, and M. Lee are supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (No. NRF-2021K2A9A2A11101617 and RS-2023-00211670). O. Kwon is also supported by Institute for Basic Science (IBS-R029-C1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-3975(97)00228-4

  2. Brand, C., Ceylan, E., Hatschka, C., Ganian, R., Korchemna, V.: Edge-cut width: an algorithmically driven analogue of treewidth based on edge cuts (2022). WG2022 accepted. arXiv:2202.13661

  3. Bredereck, R., Heeger, K., Knop, D., Niedermeier, R.: Parameterized complexity of stable roommates with ties and incomplete lists through the lens of graph parameters. Inf. Comput. 289(part A) (2022). Paper No. 104943, 41. https://doi.org/10.1016/j.ic.2022.104943

  4. Cygan, M., et al.: Parameterized Algorithms, 1st edn. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  5. Ding, G., Oporowski, B.: On tree-partitions of graphs. Discrete Math. 149(1), 45–58 (1996). https://doi.org/10.1016/0012-365X(94)00337-I. www.sciencedirect.com/science/article/pii/0012365X9400337I

  6. Fellows, M.R., et al.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2), 143–153 (2011). https://doi.org/10.1016/j.ic.2010.11.026

    Article  MathSciNet  MATH  Google Scholar 

  7. Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width. SIAM J. Discrete Math. 36(4), 2635–2666 (2022). https://doi.org/10.1137/20M137478X

    Article  MathSciNet  MATH  Google Scholar 

  8. Ganian, R., Korchemna, V.: The complexity of Bayesian network learning: revisiting the superstructure. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 430–442. Curran Associates, Inc. (2021). www.proceedings.neurips.cc/paper/2021/file/040a99f23e8960763e680041c601acab-Paper.pdf

  9. Ganian, R., Korchemna, V.: Slim tree-cut width (2022). arXiv:2206.15091

  10. Ganian, R., Ordyniak, S.: The power of cut-based parameters for computing edge-disjoint paths. Algorithmica 83(2), 726–752 (2021). https://doi.org/10.1007/s00453-020-00772-w

    Article  MathSciNet  MATH  Google Scholar 

  11. Gözüpek, D., Özkan, S., Paul, C., Sau, I., Shalom, M.: Parameterized complexity of the MINCCA problem on graphs of bounded decomposability. Theor. Comput. Sci. 690, 91–103 (2017). https://doi.org/10.1016/j.tcs.2017.06.013

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, E.J., Oum, S.I., Paul, C., Sau, I., Thilikos, D.M.: An FPT 2-approximation for tree-cut decomposition. Algorithmica 80(1), 116–135 (2018). https://doi.org/10.1007/s00453-016-0245-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Korhonen, T.: A single-exponential time 2-approximation algorithm for treewidth. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science–FOCS 2021, Los Alamitos, CA, pp. 184–192. IEEE Computer Society (2022)

    Google Scholar 

  14. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Comb. Theory Ser. B 41(1), 92–114 (1986). https://doi.org/10.1016/0095-8956(86)90030-4

  15. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92(2), 325–357 (2004). https://doi.org/10.1016/j.jctb.2004.08.001

  16. Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991)

    Google Scholar 

  17. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb. Theory Ser. B 110, 47–66 (2015). https://doi.org/10.1016/j.jctb.2014.07.003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O-joung Kwon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, Y., Kwon, Oj., Lee, M. (2023). A New Width Parameter of Graphs Based on Edge Cuts: \(\alpha \)-Edge-Crossing Width. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43380-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43379-5

  • Online ISBN: 978-3-031-43380-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics