Skip to main content

Reconstructing Graphs from Connected Triples

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2023)

Abstract

We introduce a new model of indeterminacy in graphs: instead of specifying all the edges of the graph, the input contains all triples of vertices that form a connected subgraph. In general, different (labelled) graphs may have the same set of connected triples, making unique reconstruction of the original graph from the triples impossible. We identify some families of graphs (including triangle-free graphs) for which all graphs have a different set of connected triples. We also give algorithms that reconstruct a graph from a set of triples, and for testing if this reconstruction is unique. Finally, we study a possible extension of the model in which the subsets of size k that induce a connected graph are given for larger (fixed) values of k.

LC is supported by the Institute for Basic Science (IBS-R029-C1) and CG by Marie-Skłodowska Curie grant GRAPHCOSY (number 101063180). MvK and JV are supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 612.001.651.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, M., Wenk, C.: Constructing street networks from GPS trajectories. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 60–71. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_7

    Chapter  Google Scholar 

  2. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bastide, P., et al.: Reconstructing graphs from connected triples (2023)

    Google Scholar 

  4. Bollobás, B.: Random graphs. In: Modern Graph Theory. GTM, vol. 184, pp. 215–252. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0619-4_7

    Chapter  MATH  Google Scholar 

  5. Bondy, J.A., Hemminger, R.L.: Graph reconstruction - a survey. J. Graph Theory 1(3), 227–268 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowler, A., Brown, P., Fenner, T.: Families of pairs of graphs with a large number of common cards. J. Graph Theory 63(2), 146–163 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Brandes, U., Cornelsen, S.: Phylogenetic graph models beyond trees. Discrete Appl. Math. 157(10), 2361–2369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cameron, P.J., Martins, C.: A theorem on reconstruction of random graphs. Comb. Probab. Comput. 2(1), 1–9 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, pp. 197–200. MIT press (2022)

    Google Scholar 

  10. Dey, T.K., Wang, J., Wang, Y.: Graph reconstruction by discrete Morse theory. In: Proceedings of the 34th International Symposium on Computational Geometry. Leibniz International Proceedings in Informatics (LIPIcs), vol. 99, pp. 31:1–31:15 (2018)

    Google Scholar 

  11. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Comput. 5(4), 691–703 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feder, T.: Network flow and 2-satisfiability. Algorithmica 11(3), 291–319 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with \(0(1)\) worst case access time. J. ACM 31(3), 538–544 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frieze, A., Karonski, M.: Introduction to Random Graphs. Cambridge University Press, New York (2015)

    Book  MATH  Google Scholar 

  15. Giles, W.B.: The reconstruction of outerplanar graphs. J. Comb. Theory Ser. B 16(3), 215–226 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Groenland, C., Guggiari, H., Scott, A.: Size reconstructibility of graphs. J. Graph Theory 96(2), 326–337 (2021)

    Article  MathSciNet  Google Scholar 

  17. Harary, F.: A survey of the reconstruction conjecture. In: Bari, R.A., Harary, F. (eds.) Graphs and Combinatorics. LNCS, vol. 406, pp. 18–28. Springer, Berlin (1974). https://doi.org/10.1007/BFb0066431

    Chapter  Google Scholar 

  18. Janson, S., Rucinski, A., Luczak, T.: Random Graphs. John Wiley & Sons, Hoboken (2011)

    MATH  Google Scholar 

  19. Kannan, S., Mathieu, C., Zhou, H.: Graph reconstruction and verification. ACM Trans. Algorithms 14(4), 1–30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kassiano, V., Gounaris, A., Papadopoulos, A.N., Tsichlas, K.: Mining uncertain graphs: an overview. In: Sellis, T., Oikonomou, K. (eds.) ALGOCLOUD 2016. LNCS, vol. 10230, pp. 87–116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57045-7_6

    Chapter  Google Scholar 

  21. Kelly, P.J.: On Isometric Transformations. Ph.D. thesis, University of Wisconsin (1942)

    Google Scholar 

  22. Lauri, J.: The reconstruction of maximal planar graphs. J. Combi. Theory Ser. B 30(2), 196–214 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lauri, J., Scapellato, R.: Topics in Graph Automorphisms and Reconstruction. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  24. Mordeson, J.N., Peng, C.S.: Operations on fuzzy graphs. Inf. Sci. 79(3), 159–170 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mossel, E., Ross, N.: Shotgun assembly of labeled graphs. IEEE Trans. Netw. Sci. Eng. 6(2), 145–157 (2017)

    Article  MathSciNet  Google Scholar 

  26. Myrvold, W.: The degree sequence is reconstructible from \(n- 1\) cards. Discrete Math. 102(2), 187–196 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Tanaka, K., Shimura, M. (eds.) Fuzzy Sets and their Applications to Cognitive and Decision Processes, pp. 77–95. Elsevier (1975)

    Google Scholar 

  28. Tutte, W.: All the king’s horses. A guide to reconstruction. Graph Theory Relat. Top., 15–33 (1979)

    Google Scholar 

  29. Ulam, S.M.: A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, vol. 8. Interscience Publishers (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Bastide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bastide, P. et al. (2023). Reconstructing Graphs from Connected Triples. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43380-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43379-5

  • Online ISBN: 978-3-031-43380-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics